Mixed-Weight Committee Selection in Proof-of-Stake: Tunable Stake-Baseline Mixing with Exponential Tail Guarantees and Incentive Compatibility

Proof-of-Stake (PoS) blockchains often select committees in direct proportion to stake, which makes security sensitive to large validators and stake concentration.  In such settings, a purely stake-based lottery can sometimes produce committees whose adversarial share crosses the safety threshold, even if the global adversarial stake remains below one third.  This paper introduces a simple mixed-weight rule that combines stake with a bounded baseline distribution through a single mixing parameter $\lambda$.  The rule leaves committee size, rewards, and VRF-based sortition unchanged, but pulls weight away from highly concentrated positions.  Proved that, whenever the adversary is more concentrated than the baseline, the expected adversarial seats fall linearly in $\lambda$, while standard concentration bounds show an exponential drop in committee-capture probability.  While the mechanism relies on entity-level attribution (or high-cost identities) to prevent Sybil attacks, experiments on ten production PoS networks indicate that modest mixing (around $\lambda=0.3$) reduces expected adversarial seats by about one quarter and tightens worst-case guarantees by orders of magnitude.

  1. Bentov I., Gabizon A., Mizrahi A.  Cryptocurrencies Without Proof of Work.  Financial Cryptography and Data Security.  142–157 (2016).
  2. Nakamoto S.  Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
  3. Micali S., Rabin M., Vadhan S.  Verifiable random functions.  40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039). 120–130 (1999).
  4. Hoeffding W.  Probability Inequalities for Large Sums of Bounded Random Variables.  Journal of the American Statistical Association.  58 (301), 13–30 (1963).
  5. Douceur J. R.  The Sybil Attack.  International Workshop on Peer-to-Peer Systems (IPTPS). 251–260 (2002).
  6. Leonardos S., Reijsbergen D., Piliouras G.  Weighted Voting on the Blockchain: Improving Consensus in Proof of Stake Protocols.  International Journal of Network Management.  31 (2), e2128 (2021).
  7. Gilad Y., Hemo R., Micali S., Vlachos G., Zeldovich N.  Algorand: Scaling Byzantine Agreements for Cryptocurrencies.  SOSP '17: Proceedings of the 26th Symposium on Operating Systems Principles.  51–68 (2017).
  8. Goldberg S., Reyzin L., Papadopoulos D., Včelák J.  Verifiable Random Functions (VRFs).  Internet Research Task Force (IRTF), RFC 9381 (2023).
  9. Buterin V., Griffith V.  Casper the Friendly Finality Gadget.  Preprint arXiv:1710.09437 (2017).
  10. Castro M., Liskov B.  Practical Byzantine Fault Tolerance.  3rd Symposium on Operating Systems Design and Implementation (OSDI 99).  173–186 (1999).
  11. Akbar N. A., Muneer A., ElHakim N., Fati S. M.  Distributed Hybrid Double-Spending Attack Prevention Mechanism for Proof-of-Work and Proof-of-Stake Blockchain Consensuses.  Future Internet.  13 (11), 285 (2021).
  12. Reijsbergen D., Szalachowski P., Ke J., Li Z., Zhou J.  LaKSA: A Probabilistic Proof-of-Stake Protocol.  Proceedings of the Network and Distributed System Security Symposium (NDSS).  1–18 (2021).
  13. Windiatmaja J. H., Hanggoro D., Salman M., Sari R. F.  PoIR: A Node Selection Mechanism in Reputation-Based Blockchain Consensus Using Bidirectional LSTM Regression Model.  Computers, Materials & Continua.  77 (2), 2309–2332 (2023).
  14. Gaži S., Kiayias A., Russell P.  Fait Accompli Committee Selection: Improving the Size-Security Tradeoff of Stake-Based Committees.  CCS '23: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security.  845–858 (2023).
  15. Klenke A., Mattner L.  Stochastic ordering of classical discrete distributions.  Advances in Applied Probability.  42 (2), 392–410 (2010).
  16. Wood G.  Ethereum: A Secure Decentralised Generalised Transaction Ledger.  Ethereum Project Yellow Paper (2014).
  17. Teerapabolarn K.  Binomial approximation for a sum of independent hypergeometric random variables.  Global Journal of Pure and Applied Mathematics.  11 (4), 1967–1970 (2015).
  18. Metropolis N., Ulam S.  The Monte Carlo Method.  Journal of the American Statistical Association.  44 (247), 335–341 (1949).
  19. Ava Labs.  Avalanche Platform Documentation (2020)
  20. Celestia Foundation.  Celestia: A Modular Data Availability Network.  Technical Specification v1.0 (2023).
  21. Interchain Foundation.  Cosmos Hub Documentation: Tendermint and Staking (2019).
  22. Injective Labs.  Injective Protocol: A Layer-1 Optimized for DeFi.  Whitepaper (2021).
  23. NEAR Foundation.  NEAR Protocol: Nightshade Sharding and PoS Mechanism.  Technical Paper (2020).
  24. Osmosis Labs.  Osmosis: AMM Chain on the Cosmos SDK.  Protocol Documentation (2021).
  25. Sei Labs.  Sei Network: Parallelized EVM Layer-1.  Technical Whitepaper (2023).
  26. Solana Foundation.  Solana: A New Architecture for High Performance Blockchain.  Whitepaper v0.8 (2018).
  27. Mysten Labs.  Sui: A High-Throughput Object-Centric Blockchain.  Whitepaper (2022).
  28. Tezos Foundation.  Tezos: Self-Amending Cryptographic Ledger.  Whitepaper (2018).
  29. Chernoff H.  Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations.  Annals of Mathematical Statistics.  23 (4), 493–507 (1952).
  30. Cramér H.  On a new limit theorem in probability theory  (Sur un nouveau théorè}me-limite de la théorie des probabilités).  Actualités scientifiques et industrielles.  736, 2–23 (1938).