АРХІТЕКТУРНО-КОНСТРУКТИВНІ ЕЛЕМЕНТИ БУДІВЕЛЬ ПРИ 3D-ДРУЦІ: ПРОЕКТУВАННЯ, МАТЕРІАЛИ, ЕФЕКТИВНІСТЬ (ЧАСТИНА ПЕРША - ОГЛЯД)

1
Кафедра дизайну архітектурного середовища Інституту архітектури Національного університету «Львівська політехніка»

Стаття надає аналіз сучасних підходів до 3D-друку будівель. Вона акцентує увагу на трьох ключових напрямках: 1) комп'ютерні методи проектування 3D-друку будівель; 2) методи виготовлення та використані матеріали; 3) методики оцінювання їх ефективності. Розділ "Проектування/Дизайн" охоплює інструментарій та методики, що використовуються від етапу проекту до виробництва елементів будівель. Розділ "Технологія та матеріали" розглядає можливості для інженерних застосувань, розподілених за типами матеріалів. Розділ "Оцінка ефективності" висвітлює сучасні стратегії аналізу 3DP-будівель. В першій частині цього аналізу (тобто у даній статті) автор детально розглядає загальну концепцію дослідження, акцентуючи увагу на його ключових аспектах.

Abdallah Y.K., Estévez A.T. (2021). 3D-printed biodigital clay bricks. Biomimetics, 6 , p. 59. Available at: https://doi.org/10.3390/biomimetics6040059

Agustí-Juan I., Habert G. (2017). Environmental design guidelines for digital fabrication. J. Clean. Prod., 142, pp. 2780-2791. Available at: https://doi.org/10.1016/j.jclepro.2016.10.190

Arefin A.M.E., Khatri N.R., Kulkarni N., Egan P.F. (2021).Polymer 3D printing review: materials, process, and design strategies for medical applications. Polymers, 13, p. 1499. Available at: https://doi.org/10.3390/polym13091499

Behera A., Rajak D.K., Jeyasubramanian K. (2022). Chapter 19 - fabrication of nanostructures with excellent self-cleaning properties. S. Thomas, N. Kalarikkal, A.R. Abraham (Eds.). Design, Fabrication, and Characterization of Multifunctional Nanomaterials, Elsevier, pp. 449-478. Available at: https://doi.org/10.1016/B978-0-12-820558-7.00014-5

Buchanan C., Gardner L.(2019). Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng. Struct., 180, pp. 332-348. Available at: https://doi.org/10.1016/j.engstruct.2018.11.045

Correa D., Papadopoulou A., Guberan C., Jhaveri N., Reichert S., Menges A., Tibbits S. (2015). 3D-Printed Wood: Programming Hygroscopic Material Transformations, 3D Printing and Additive Manufacturing. 2, pp. 106-116. Available at: https://doi.org/10.1089/3dp.2015.0022

Craveiro F., Nazarian S., Bartolo H. , Bartolo P.J. , Pinto Duarte J. (2020). An automated system for 3D printing functionally graded concrete-based materials. Addit. Manufact., 33, p. 101146. Available at: https://doi.org/10.1016/j.addma.2020.101146

Cucinella M. (2021). TECLA Technology and Clay 3D Printed House / Mario Cucinella Architects. ArchDaily. – Retrieved from https://www.archdaily.com/960714/tecla-technology-and-clay-3d-printed-ho... [Date of reference: 16.10.2023].

Das S., Bourell D.L., Babu S.S. (2016). Metallic materials for 3D printing. Mater. Res. Soc. (MRS) Bull., 41, pp. 729-741. – Available at: https://doi.org/10.1557/mrs.2016.217

Delgado Camacho D., Clayton P., O’Brien W.J., Seepersad C., Juenger M., Ferron R., Salamone S. (2018). Applications of additive manufacturing in the construction industry – a forward-looking review. Autom. Constr., 89, pp. 110-119. Available at: https://doi.org/10.1016/j.autcon.2017.12.031

Duda T., Raghavan L.V. (2016). 3D metal printing technology. Int. Fed. Automat. Control-PapersOnLine, 49, pp. 103-110. Available at: https://doi.org/10.1016/j.ifacol.2016.11.111

IEA. Building Envelopes – Tracking Report. – Retrieved from https://www.iea.org/reports/building-envelopes (2021). [Date of reference: 16.10.2023].

Furet B., Poullain P., Garnier S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Addit. Manufact., 28, pp. 58-64. Available at: https://doi.org/10.1016/j.addma.2019.04.002

García-Dominguez A., Claver J., Sebastián M.A. (2020). Integration of additive manufacturing, parametric design, and optimization of parts obtained by fused deposition modeling (FDM). A methodological approach. Polymers., 12, p. 1993. Available at: https://doi.org/10.3390/polym12091993

Gardner L., Kyvelou P., Herbert G., Buchanan C. (2020). Testing and initial verification of the world’s first metal 3D printed bridge. J. Constr. Steel Res., 172, p. 106233. Available at: https://doi.org/10.1016/j.jcsr.2020.106233

Ghaffarian Hoseini A., Berardi U., Ali G., Makaremi N. (2013). Intelligent facades in low-energy buildings. Int. J. Environ. Clim. Change, 2, pp. 437-464. Available at: https://doi.org/10.9734/BJECC/2012/2912

Gomez E.F., Wanasinghe S.V., Flynn A.E., Dodo O.J., Sparks J.L., Baldwin L.A., Tabor C.E., Durstock M.F., Konkolewicz D., Thrasher C.J. (2021). 3D-printed self-healing elastomers for modular soft robotics. Am. Chem. Soc. Appl. Mater. Interf., 13, pp. 28870-28877. Available at: https://doi.org/10.1021/acsami.1c06419

Gomaa M., Jabi W., Soebarto V., Xie Y.M. (2022). Digital manufacturing for earth construction: a critical review. J. Clean. Prod., 338, p. 130630. Available at: https://doi.org/10.1016/j.jclepro.2022.130630

Gutierrez D.B., Caldona E.B., Espiritu R.D., Advincula R.C. (2021). The potential of additively manufactured membranes for selective separation and capture of CO2. Mater. Res. Soc. Commun., 11, pp. 391-401. Available at: https://doi.org/10.1557/s43579-021-00062-8

Kotz F., Arnold K., Bauer W., Schild D., Keller N., Sachsenheimer K., Nargang T.M., Richter C., Helmer D., Rapp B.E. (2017). Three-dimensional printing of transparent fused silica glass. Nature., 544, pp. 337-339. Available at: https://doi.org/10.1038/nature22061

Kyvelou P., Slack H., Daskalaki Mountanou D., Wadee M.A., Britton T.B., Buchanan C., Gardner L. (2020). Mechanical and microstructural testing of wire and arc additively manufactured sheet material. Mater. Des., 192, p. 108675. Available at: https://doi.org/10.1016/j.matdes.2020.108675

Labonnote N., Rønnquist A., Manum B., Rüther P. (2016). Additive construction: state-of-the-art, challenges and opportunities. Autom. Constr., 72, pp. 347-366. Available at: https://doi.org/10.1016/j.autcon.2016.08.026

Laghi V., Palermo M., Gasparini G., Girelli V.A., Trombetti T. (2021). On the influence of the geometrical irregularities in the mechanical response of wire-and-arc additively manufactured planar elements. J. Constr. Steel Res., 178, p. 106490. – Available at: https://doi.org/10.1016/j.jcsr.2020.106490

Leschok M., Cheibas I., Piccioni V., Seshadri B., Schlüter A., Gramazio F., Kohler M., Dillenburger B.(2023). 3D printing facades: Design, fabrication, and assessment methods. Autom. Constr., 152. Available at: https://doi.org/10.1016/j.autcon.2023.104918

Mohammad M., Masad E., Al-Ghamdi S.G. (2020). 3D concrete printing sustainability: a comparative life cycle assessment of four construction method scenarios. Buildings., 10, p. 245. Available at: https://doi.org/10.3390/buildings10120245

Mostafavi S., Bier H. (2016). Materially informed design to robotic production: A robotic 3D printing system for informed material deposition. Reinhardt D., Saunders R., Burry J. (Eds.), Robotic Fabrication in Architecture, Art and Design, 2016. Springer International Publishing, Cham, pp. 338-349. Available at: https://doi.org/10.1007/978-3-319-26378-6_27

Naboni R., Breseghello L. , Kunic A. (2019). Multi-scale design and fabrication of the trabeculae pavilion. Addit. Manufact., 27, pp. 305-317. Available at: https://doi.org/10.1016/j.addma.2019.03.005

Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. (2018). Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B, 143, pp. 172-196. Available at: https://doi.org/10.1016/j.compositesb.2018.02.012

Pessoa S., Guimarães A.S., Lucas S.S., Simões N.(2021). 3D printing in the construction industry - a systematic review of the thermal performance in buildings. Renew. Sust. Energ. Rev., 141, p. 110794. Available at: https://doi.org/10.1016/j.rser.2021.110794

Perrot A., Rangeard D., Courteille E. (2018). 3D printing of earth-based materials: processing aspects. Constr. Build. Mater., 172, pp. 670-676. Available at: https://doi.org/10.1016/j.conbuildmat.2018.04.017

Wiberg A., Persson J., Ölvander J. (2019) Design for additive manufacturing – a review of available design methods and software. Rapid Prototyp. J., 25, pp. 1080-1094. Available at: https://doi.org/10.1108/RPJ-10-2018-0262

Wolf A., Rosendahl P.L., Knaack U. (2022). Additive manufacturing of clay and ceramic building components. Autom. Constr., 133, p. 103956. – Available at: https://doi.org/10.1016/j.autcon.2021.103956

Xiao J., Zou S., Ding T., Duan Z., Liu Q. (2021). Fiber-reinforced mortar with 100% recycled fine aggregates: a cleaner perspective on 3D printing. J. Clean. Prod., 319, p. 128720. Available at: https://doi.org/10.1016/j.jclepro.2021.128720

Xiao J., Zou S., Yu Y., Wang Y., Ding T., Zhu Y., Yu J., Li S., Duan Z., Wu Y., Li  L. (2020). 3D recycled mortar printing: system development, process design, material properties and on-site printing. J. Build. Eng., 32, p. 101779. – Available at: https://doi.org/10.1016/j.jobe.2020.101779

Yi H., Kim Y. (2021). Prototyping of 4D-printed self-shaping building skin in architecture: design, fabrication, and investigation of a two-way shape memory composite (TWSMC) façade panel. J. Build. Eng., 43, p. 103076. – Available at: https://doi.org/10.1016/j.jobe.2021.103076

Zhang D., Liu X., Qiu J. (2021). 3D printing of glass by additive manufacturing techniques: a review. Front. Optoelectron., 14, pp. 263-277.Available at: https://doi.org/10.1007/s12200-020-1009-z

Zohdi N., Yang R. (2021). Material anisotropy in additively manufactured polymers and polymer composites: a review. Polymers., 13, p. 3368. Available at: https://doi.org/10.3390/polym13193368