нейронна мережа

Розроблення системи розпізнавання людських облич для відеоспостереження

Досліджено принципи побудови систем спостереження та розпізнавання об’єктів. Наведено класифікацію способів розпізнавання людських облич. Проаналізовано роботу мережі прогресивного калібрування (ПКМ) для розпізнавання людських облич. Розроблено алгоритм розпізнавання облич, створено програмну систему розпізнавання облич і проведено її тестування.

Використання нейронної мережі для розроблення системи уникнення перешкод на дорозі

Досліджено можливості використання нейронної мережі для реалізації системи уникнення перешкод на дорозі. Розглянуто алгоритми, на основі яких може працювати така система, та принципи навчання нейронної мережі. Для проведення дослідження розроблено симулятор на базі Unity та ML Agents. З допомогою симулятора досліджено ефективність навчання та роботи цієї нейронної мережі при різних конфігураціях.

Модель паралельної сортувальної нейронної мережі дискретного часу

Представлено модель паралельної сортувальної нейронної мережі дискретного часу. Модель описується системою різницевих і вихідних рівнянь. Мережа відзначається високою швидкодією, довільною скінченною роздільною здатністю вхідних даних і придатна для обробки невідомих вхідних даних зі скінченними значеннями, розміщених у довільному відомому скінченному діапазоні. Мережа характеризується незначною обчислювальною складністю і складністю схемотехнічної реалізації. Наведено результати комп’ютерного моделювання, які ілюструють ефективність мережі.

A Software Service for the Garbage Type Recognition Based on the Mobile Computing Devices With Graphical Data Input

The article describes problems of determining the type and automatic sorting of household waste using mobile computing devices. All of the required hardware and partially software, required for implementation of this service, are already present in modern smartphones.

Побудова швидкісної моделі поперечної хвилі для складноструктурного геологічного середовища з використанням нейронної мережі (на прикладі даних Південно-Каспійського басейну

Мета. Розробка методу прогнозування двох-трьох мірної швидкісної моделі середовища поперечної хвилі. Досліджується складноструктурне геологічне середовище на базі геофізичних і геологічних даних із застосуванням штучної нейронної мережі. Метод. передбачає побудову та використання моделей середовища за даними геофізичних досліджень свердловин, сейсморозвідки та інших наземних геофізичних методів.

Схемотехнічна реалізація моделі розпаралеленої штучної нейронної мережі нечіткої теорії адаптивного резонансу

У статті описана і змодельована схемотехнічна реалізація розпаралеленої штучної нейрон- ної мережі нечіткої теорії адаптивного резонансу. У мережі реалізовані паралельний вибір категорії та резонансу. Нейронні схеми типу “winner-take-all” неперервного та дискретного часу забезпечують ідентифікацію найбільших з М-входів. Схеми неперервного часу описані рівняннями стану з розривною правою частиною. Дискретний аналог описано різницевим рівнянням.

КОРИГУВАННЯ ПАРАМЕТРІВ ОБ’ЄКТА КЕРУВАННЯ ЗА ДОПОМОГОЮ ФОРМУЛИ АКЕРМАННА

Методи синтезу контролерів, які базуються на використанні частотних характеристик або кореневого годографа, вважаються класичними або традиційними. Частотні методи доступні в практичному застосуванні, тому більшість систем керування проектуються саме на основі різних модифікацій цих методів. Відмінною особливістю цих методів є так звана робастність, що означає нечутливість характеристик замкненої системи до незначних похибок моделі реальної системи.

Розробка штучної нейронної мережі з осциляторними нейронами для розпізнавання спектральних образів

Розроблено новий тип штучної нейронної мережі з осциляторними нейронами, які мають власні частоти. За допомогою такої штучної нейронної мережі на основі інформаційного резонансу реалізовано новий метод розпізнавання мультиспектральних образів (мультиспектральних електромагнітних сигналів), що випромінюють динамічні об’єкти. Побудована нейронна мережа розпізнаватиме вхідні спектральні образи з амплітудою нестаціонарного сигналу співмірною з амплітудою сигналу шуму, завдяки резонансному ефекту в нелінійнійних осциляторних нейронах.

ЗАЛЕЖНІСТЬ ПОХИБКИ ПРОГНОЗУВАННЯ ТЕМПЕРАТУРИ НЕЙРОННИМИ МЕРЕЖАМИ ВІД ПОХИБКИ ВИМІРЮВАННЯ

У  роботі  подано  результати  дослідження  залежності  похибки  прогнозування  значення  температури нейронними  мережами  від  похибки  вимірювання.  Описано  алгоритм  створення  тестових  послідовностей  та  навчання нейронних  мереж.  Наведено  результати  дослідження  залежності  похибки  прогнозування  значення  температури  від мультиплікативної,  нелінійної  та  випадкової  складових  похибки,  а  також  описано  результати  дослідження  залежності похибки прогнозування значення температури від одночасного впливу цих складових.

ПРОГНОЗУВАННЯ ТЕМПЕРАТУРИ ПОТОКів ВОДИ ТА ПОВІТРЯ ІЗ ВИКОРИСТАННЯМ НЕЙРОННої МЕРЕЖІ

Викладено  результати  дослідження  залежності  похибки  прогнозування  температури  потоку  води  та повітря  від  кількості  входів  нейронної  мережі  та  перевірки  навченої  нейронної  мережі  на  експериментальних  даних. Наведено  формулу  температурного  перехідного  процесу  та  описано  створення  тестових  послідовностей  для  навчання нейронних мереж. Подано малюнки  та  опис  устав,  за  допомогою  яких  виконано  вимірювання  значень  температурного перехідного процесу. Описано результати проведених експериментальних досліджень.