У статті викладено персоналізоване функціональне бачення архітектури інтелектуальних транспортних систем (ІТС) щодо інформування користувачів міських транспортних систем на прикладі систем ІТС центрального міста мегаполісу. Фундаментальним питанням з погляду користувачів транспорту є отримання інформації про повний функціональний спектр транспортних систем. На основі такої інформації можна планувати поїздки так, щоб, з одного боку, вони були максимально ефективними для кожного користувача окремо, а з іншого – стійкими з погляду транспортних систем і конкретної транспортної політики міста / метрополії. Вибір такого бачення пов’язаний з тим, що основною потребою так званих кінцевих користувачів систем ІТС, тобто людей, які пересуваються за допомогою транспортних систем, є отримання цінної та актуальної інформації в ефективний спосіб – бажано в режимі реального часу, тобто під час пересування користувачів. Основне питання, тобто персоналізоване функціональне бачення архітектури системи ІТС щодо інформації для користувачів міських транспортних систем, висвітлено на прикладі систем ІТС, що працюють у центральному місті міської агломерації в Польщі, яке має статус мегаполісу. Ці системи ІТС були впроваджені на межі 2023–2024 років і розроблені з використанням європейської рамкової архітектури ІТС. Цілі полягають у визначенні поточного обсягу інформації для користувачів та поточного обсягу системних функцій досліджуваної системи ІТС, щоб вказати подальші напрями розвитку досліджуваної системи ІТС. Тому наведено характеристики зв’язків між потребами користувачів міського транспорту та функціями систем ІТС, пов’язаними з інформацією для цих користувачів. Відповідно до такого погляду на системи ІТС, визначено напрями їх подальшого розширення у функціональній сфері, що охоплює потреби людей, які користуються міською мікромобільністю та системами спільного користування транспортом, тобто спільного користування автомобілями, велосипедами та електросамокатами в поїздках, які планують у режимі реального часу. Другий напрям розвитку – електромобільність, що передбачає розвиток сервісів, пов’язаних із навігацією до паркувальних місць з електрозарядками та плануванням поїздок з урахуванням підзаряджання тягової батареї електромобілів – легкових автомобілів, автомобілів доставки та вантажівок.
1. European Intelligent Transport Systems (ITS) Framework Architecture. Retrieved from: https://frame-online.eu/ (in English).
2. Macedo, E., Teixeira, J., Sampaio, C., Silva, N., Coelho, M. C., Glinos, M., & Bandeira, J. M. (2021). Real-time information systems for public transport: User perspective. Transportation Research Procedia, 52, 732-739. DOI: 10.1016/j.trpro.2021.01.088 (in English).
https://doi.org/10.1016/j.trpro.2021.01.088
3. Lin, T. S., & Chang, C. N. (2015). What Travelers Want: An Investigation into User Needs and User Wants on Display. In Design, User Experience, and Usability: Interactive Experience Design: 4th International Conference, DUXU 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part III 4 (pp. 496-504). Springer International Publishing. DOI: 10.1007/978-3-319-20889-3_46 (in English).
https://doi.org/10.1007/978-3-319-20889-3_46
4. Bruglieri, M., Bruschi, F., Colorni, A., Luè, A., Nocerino, R., & Rana, V. (2015). A real-time information system for public transport in case of delays and service disruptions. Transportation Research Procedia, 10, 493-502. DOI: 10.1016/j.trpro.2015.09.003 (in English).
https://doi.org/10.1016/j.trpro.2015.09.003
5. Kong, X., Eisele, W. L., Zhang, Y., & Cline, D. B. (2018). Evaluating the impact of real-time mobility and travel time reliability information on truck drivers' routing decisions. Transportation Research Record, 2672(9), 164-172. DOI: 10.1177/0361198118797508 (in English).
https://doi.org/10.1177/0361198118797508
6. Huang, Y., Jiang, S., Jafari, M., & Jin, P. J. (2024). Real-Time Driver and Traffic Data Integration for Enhanced Road Safety. IEEE Transactions on Computational Social Systems, (pp. 7711-7722). DOI: 10.1109/TCSS.2024.3448400 (in English).
https://doi.org/10.1109/TCSS.2024.3448400
7. Postranskyy, T., & Vovk, Y. (2020). Changing of the bus driver's functional state in city conditions. Transport technologies, 1(1), 12-21. DOI: 10.23939/tt2020.01.012 (in English).
https://doi.org/10.23939/tt2020.01.012
8. Al-Sultan, S., Al-Bayatti, A. H., & Zedan, H. (2013). Context-aware driver behavior detection system in intelligent transportation systems. IEEE transactions on vehicular technology, 62(9), 4264-4275. DOI: 10.1109/TVT.2013.2263400 (in English).
https://doi.org/10.1109/TVT.2013.2263400
9. Municipal Streets and Bridges Authority in Katowice. (2020). Specification of essential terms of the order for Urban Intelligent Transport System [Unpublished internal document]. Katowice, Poland (in Polish)
10. Municipal Streets and Bridges Authority in Katowice. (2020). Functional and utility program of the Urban Intelligent Transport System [Unpublished internal document]. Katowice, Poland (in Polish)
11. Municipal Streets and Bridges Authority in Katowice. (2020). Annex to functional and utility program of the Urban Intelligent Transport System - FRAME architecture of the ITS system [Unpublished internal document]. Katowice, Poland (in Polish)
12. ECUPT - The Centre for EU Transport Projects. Retrieved from: https://www.cupt.gov.pl/en/ceutp/about-us/ (in English).
13. Katowice City Authorities. (2011). Content-related assessment (opinion, advice, consultations) of the investment project "Functional analysis for the Intelligent Transport Management System in Katowice, taking into account the metropolitan function of the city of Katowice" [Unpublished internal study]. Katowice, Poland (in Polish)
14. Tramwaje Śląskie S.A. (2013). Analysis of the possibilities of a systemic solution in the scope of priority for tram communication in the Upper Silesian Agglomeration [Unpublished internal study]. Katowice, Poland (in Polish)
15. Tramwaje Śląskie S.A. (2013). The need for a systemic solution regarding the priority of tram transport in the Upper Silesian Agglomeration [Unpublished internal study]. Katowice, Poland (in Polish)
16. Katowice City Authorities. (2015). Consulting, advising and issuing opinions for the "Concept and architecture of an intelligent traffic management system in the area of operation of the Municipal Transport Association of the Upper Silesian Industrial District" [Unpublished internal study]. Katowice, Poland (in Polish)
17. Katowice City Authorities. (2016). Analysis of the current status in terms of conditions for the development of pre-design documentation for the project "Katowice Intelligent Transport Management System" [Unpublished internal study]. Katowice, Poland (in Polish)
18. Katowice City Authorities. (2016). Guidelines for the tender specification for the selection of the contractor for the pre-design documentation for the project "Katowice Intelligent Transport Management System" [Unpublished internal study]. Katowice, Poland (in Polish)
19. Karoń, G., & Mikulski, J. (2017). Selected problems of transport modelling with ITS services impact on travel behavior of users. In 2017 15th International Conference on ITS Telecommunications (ITST) (pp. 1-7). IEEE. DOI: 10.1109/ITST.2017.7972231 (in English).
https://doi.org/10.1109/ITST.2017.7972231
20. Karoń, G., & Mikulski, J. (2017). Selected problems of ITS project development-concept exploration and feasibility study. In International Conference on Transport Systems Telematics (pp. 1-15). Cham: Springer International Publishing. DOI: 10.1007/978-3-319-66251-0_1 (in English).
https://doi.org/10.1007/978-3-319-66251-0_1
21. Karoń, G., & Mikulski, J. (2017). Functional configuration of ITS for urban agglomeration. In Smart Solutions in Today's Transport: 17th International Conference on Transport Systems Telematics, TST 2017, (pp. 55-69). Springer International Publishing. DOI: 10.1007/978-3-319-66251-0_5 (in English).
https://doi.org/10.1007/978-3-319-66251-0_5
22. Karoń, G., & Janecki, R. (2017). Development of various scenarios of ITS systems for urban area. In Intelligent Transport Systems and Travel Behaviour: 13th Scientific and Technical Conference" Transport Systems. Theory and Practice 2016" Katowice, Poland, (pp. 3-12). Springer International Publishing. DOI: 10.1007/978-3-319-43991-4_1 (in English).
https://doi.org/10.1007/978-3-319-43991-4_1
23. Karoń, G., & Mikulski, J. (2018). Problems of modelling of ITS services in transportation models. Archives of Transport System Telematics, 11(3), 30-34. (in English).
24. Karoń, G., & Mikulski, J. (2018). Modelling of ITS service configuration and stakeholders' aspirations. Archives of Transport System Telematics, 11(3), 24-29 (in English).
25. Karoń, G., & Mikulski, J. (2020). Its and systems engineering-methodical aspects. In Research and the Future of Telematics: 20th International Conference on Transport Systems Telematics, TST 2020, Kraków, Poland, (pp. 71-84). Springer International Publishing. DOI: 10.1007/978-3-030-59270-7_6 (in English).
https://doi.org/10.1007/978-3-030-59270-7_6
26. Systems Engineering for Intelligent Transportation Systems: An Introduction for Transportation Professionals. Retrieved from: https://ops.fhwa.dot.gov/int_its_deployment/sys_eng.htm (in English).
27. Abduljabbar, R. L., Liyanage, S., & Dia, H. (2021). The role of micro-mobility in shaping sustainable cities: A systematic literature review. Transportation research part D: transport and environment, 92, 102734. DOI: 10.1016/j.trd.2021.102734 (in English).
https://doi.org/10.1016/j.trd.2021.102734
28. Reck, D. J., & Axhausen, K. W. (2021). Who uses shared micro-mobility services? Empirical evidence from Zurich, Switzerland. Transportation Research Part D: Transport and Environment, 94, 102803. DOI: 10.1016/j.trd.2021.102803 (in English).
https://doi.org/10.1016/j.trd.2021.102803
29. Ecer, F., Küçükönder, H., Kaya, S. K., & Görçün, Ö. F. (2023). Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation research part a: policy and practice, 172, 103667. DOI: 10.1016/j.tra.2023.103667 (in English).
https://doi.org/10.1016/j.tra.2023.103667
30. Schoenberg, S., & Dressler, F. (2019). Planning ahead for EV: Total travel time optimization for electric vehicles. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), (pp. 3068-3075). IEEE. DOI: 10.1109/ITSC.2019.8917335 (in English).
https://doi.org/10.1109/ITSC.2019.8917335
31. Xu, Y., Çolak, S., Kara, E. C., Moura, S. J., & González, M. C. (2018). Planning for electric vehicle needs by coupling charging profiles with urban mobility. Nature Energy, 3(6), 484-493. DOI: 10.1038/s41560-018-0136-x (in English).
https://doi.org/10.1038/s41560-018-0136-x
32. Żochowska, R., & Karoń, G. (2015). ITS services packages as a tool for managing traffic congestion in cities. In Intelligent Transportation Systems-Problems and Perspectives, (pp. 81-103). Cham: Springer International Publishing. DOI: 10.1007/978-3-319-19150-8_3 (in English).
https://doi.org/10.1007/978-3-319-19150-8_3
33. Torbaghan, M. E., Sasidharan, M., Reardon, L., & Muchanga-Hvelplund, L. C. (2022). Understanding the potential of emerging digital technologies for improving road safety. Accident Analysis & Prevention, 166, 106543. DOI: 10.1016/j.aap.2021.106543 (in English).
https://doi.org/10.1016/j.aap.2021.106543