За оцінками, до 2050 р. приріст міського населення в сучасних міських просторах перевищить 50 %. Тому моделі переміщення людей і товарів стають фундамен-тальним елементом планування, контролю та прийняття рішень у мультимодальних перевезеннях. Використання агностичної системи, що дає змогу забезпечити найкраще поєднання технологій та когнітивних моделей прогнозування, які охоплюють усі сфери транспорту (автомобільного, морського та повітряного) без обмежень мови програмування, підкріплене функціями розподілу ймовірностей на основі теорії ентропійної максимізації складних стохастичних систем як основної моделі, яку можна ввести до логічної архітектури машинного навчання. Вона дає змогу вибрати найбільш ефективну, гармонійну та стійку траєкторію перевезення. Використана методологія є дослідницько-описовою та теоретичною, ґрунтується на досвіді, отриманому в інших країнах, та поєднанні теорії Шеннона з функціями гамма-розподілу в багатовимірних стохастичних системах для транспортного сектору, що є інноваційним внеском цієї роботи. Подано репрезентативну модель інтелектуальної агностичної логічної архітектури, із інтеграцією багатовимірної системи, що підкріплює аргументи на користь її використання. Її можна розглядати як пропозицію, що підлягає розробленню та впровадженню з метою зменшення заторів на дорогах, зниження рівня забруднення навколишнього середовища та забезпечення стійких альтернатив. Викликом є розуміння цієї інтелектуальної агностичної системи законодавцями у сфері транспорту для впровадження пристроїв “IoT” у кожній транспортній одиниці та маршрутах для підключення до “мозку”, який отримує інформацію з інших галузей транспорту та від пішоходів із їхніх пристроїв за допомогою високошвидкісної технології навігації даних.
1. Dobbs, R., Smit, S., Remes, J., Manyika, J., Roxburgh, C., & Restrepo, A. (2011). Urban world: Mapping the economic power of cities. Retrieved from: https://www.mckinsey.com/featured-insights/urbanization/urban-world-mapp... (in English).
2. Ma, Z., & Zhang, P. (2022). Individual mobility prediction review: Data, problem, method and application. Multimodal transportation, 1(1), 100002. DOI: 10.1016/j.multra.2022.100002 (in English).
https://doi.org/10.1016/j.multra.2022.100002
3. Sharma, B. K. Zero Carbon Emission must be achieved at the Earliest for Sustained Growth of Our Planet Earth. IRASS Journal of Multidisciplinary Studies, 2(2), 8-16. Retrieved from: https://irasspublisher.com/assets/ articles/1739430244.pdf (in English).
4. Sharma, S., & Mishra, S. (2013). Intelligent transportation systems-enabled optimal emission pricing models for reducing carbon footprints in a bimodal network. Journal of Intelligent Transportation Systems, 17(1), 54-64. DOI: 10.1080/15472450.2012.708618 (in English).
https://doi.org/10.1080/15472450.2012.708618
5. Arya, A., Bachheti, A., Bachheti, R. K., Singh, M., & Chandel, A. K. (2024). Role of artificial intelligence in minimizing carbon footprint: A systematic review of recent insights. Biorefinery and Industry 4.0: Empowering Sustainability, 365-386. DOI: 10.1007/978-3-031-51601-6_14 (in English).
https://doi.org/10.1007/978-3-031-51601-6_14
6. Qin, X., Ke, J., Wang, X., Tang, Y., & Yang, H. (2022). Demand management for smart transportation: A review. Multimodal Transportation, 1(4), 100038. DOI: 10.1016/j.multra.2022.100038 (in English).
https://doi.org/10.1016/j.multra.2022.100038
7. Abduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability, 11(1), 189. DOI: 10.3390/su11010189 (in English).
https://doi.org/10.3390/su11010189
8. Barth, M. J., Wu, G., & Boriboonsomsin, K. (2015). Intelligent transportation systems and greenhouse gas reductions. Current Sustainable/Renewable Energy Reports, 2(3), 90-97. DOI: 10.1007/s40518-015-0032-y (in English).
https://doi.org/10.1007/s40518-015-0032-y
9. Yan, R., & Wang, S. (2022). Integrating prediction with optimization: Models and applications in transportation management. Multimodal Transportation, 1(3), 100018. DOI: 10.1016/j.multra.2022.10001 (in English).
https://doi.org/10.1016/j.multra.2022.100018
10. Sung, Y. L., Li, L., Lin, K., Gan, Z., Bansal, M., & Wang, L. (2023). An empirical study of multimodal model merging. Retrieved from: https://doi.org/10.48550/arXiv.2304.14933 (in English).
https://doi.org/10.18653/v1/2023.findings-emnlp.105
11. Regenwetter, L., Abu Obaideh, Y., & Ahmed, F. (2023). Counterfactuals for design: A model-agnostic method for design recommendations. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Retrieved from: https://doi.org/10.1115/DETC2023-117216 (in English).
https://doi.org/10.1115/DETC2023-117216
12. Singh, J., & Anand, A. (2019). Exs: Explainable search using local model agnostic interpretability. In Proceedings of the twelfth ACM international conference on web search and data mining (pp. 770-773). DOI: 10.1145/3289600.3290620 (in English).
https://doi.org/10.1145/3289600.3290620
13. Salazar-Cabrera, R., de la Cruz, Á. P., & Molina, J. M. M. (2020). Sustainable transit vehicle tracking service, using intelligent transportation system services and emerging communication technologies: A review. Journal of Traffic and Transportation Engineering (English Edition), 7(6), 729-747. DOI: 10.1016/j.jtte.2020.07.003 (in English).
https://doi.org/10.1016/j.jtte.2020.07.003
14. Lopane, F., Kamargianni, M., Yfantis, L., Chaniotakis, E., Pappelis, D., Fermi, F., ... & Magoutas, B. (2021). Harmony Model Suite: an integratedspatial and multimodal transport planning tool to lead a sustainable transition to a new mobility era. In ETC Conference Papers 2020 (2020). Association For European Transport. Retrieved from: https://discovery.ucl.ac.uk/id/eprint/10126358/1/ETC2020_HARMONY-paper.pdf (in English).
15. Lin, Z., Dong, J., Liu, C., & Greene, D. (2012). Estimation of energy use by plug-in hybrid electric vehicles: Validating gamma distribution for representing random daily driving distance. Transportation Research Record, 2287(1), 37-43. DOI: 10.3141/2287-05 (in English).
https://doi.org/10.3141/2287-05
16. Tokey, A. I., Shioma, S. A., & Jamal, S. (2022). Analysis of spatiotemporal dynamics of e-scooter usage in Minneapolis: Effects of the built and social environment. Multimodal Transportation, 1(4), 100037. DOI: 10.1016/j.multra.2022.100037 (in English).
https://doi.org/10.1016/j.multra.2022.100037
17. Yoo, S. L., Jeong, J. Y., & Yim, J. B. (2015). Estimating suitable probability distribution function for multimodal traffic distribution function. Journal of the Korean Society of Marine Environment and Safety, 21(3), 253-258. DOI: 10.7837/kosomes.2015.21.3.253 (in English).
https://doi.org/10.7837/kosomes.2015.21.3.253
18. Casas, S., Gulino, C., Suo, S., & Urtasun, R. (2020, October). The importance of prior knowledge in precise multimodal prediction. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2295-2302). DOI: 10.1109/iros45743.2020.9341199 (in English).
https://doi.org/10.1109/IROS45743.2020.9341199
19. Jabari, S. E., Freris, N. M., & Dilip, D. M. (2020). Sparse travel time estimation from streaming data. Transportation Science, 54(1), 1-20. DOI: 10.1287/trsc.2019.0920 (in English).
https://doi.org/10.1287/trsc.2019.0920
20. Guessous, Y., Aron, M., Bhouri, N., & Cohen, S. (2014). Estimating travel time distribution under different traffic conditions. Transportation Research Procedia, 3, 339-348. DOI: 10.1016/j.trpro.2014.10.014 (in English).
https://doi.org/10.1016/j.trpro.2014.10.014
21. Gupta, S., Garg, H., & Chaudhary, S. (2020). Parameter estimation and optimization of multi-objective capacitated stochastic transportation problem for gamma distribution. Complex & Intelligent Systems, 6(3), 651-667. DOI: 10.1007/s40747-020-00156-1 (in English).
https://doi.org/10.1007/s40747-020-00156-1
22. Wu, N., & Geistefeldt, J. (2014). Standard deviation of travel time in a freeway network--A mathematical quantifying tool for reliability analysis. In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems (pp. 3292-3303). DOI: 10.1061/9780784413623.316 (in English).
https://doi.org/10.1061/9780784413623.316
23. Zhang, Y., Cheng, X., & Reeves, G. (2021, March). Convergence of Gaussian-smoothed optimal transport distance with sub-gamma distributions and dependent samples. In International Conference on Artificial Intelligence and Statistics (pp. 2422-2430) (in English).
24. Ma, Z., Ferreira, L., Mesbah, M., & Zhu, S. (2016). Modeling distributions of travel time variability for bus operations. Journal of Advanced Transportation, 50(1), 6-24. DOI: 10.1002/atr.1314 (in English).
https://doi.org/10.1002/atr.1314
25. Arroyo, I., Bravo, L. C., Llinás, H., & Muñoz, F. L. (2014). Distribuciones Poisson y Gamma: Una discreta y continua relación. Prospectiva, 12(1), 99-107. DOI: 10.15665/rp.v12i1.156 (in English).
https://doi.org/10.15665/rp.v12i1.156
26. Gavilán Gonzales, M., & Gonzales Bohorquez, M. (2017). The Gamma Function: basic properties and some applications. Selecciones Matemáticas, 4(2), 177-191. DOI: 10.17268/sel.mat.2017.02.05 (in English).
https://doi.org/10.17268/sel.mat.2017.02.05
27. Rivaud, J. J. (2004). La Función Gama. Miscelánea Matemática, 39, 61-84. (in English).
28. Tasic, I., Porter, R. J., & Brewer, S. (2016). Applications of generalized additive and Bayesian hierarchical models for areal safety analysis: case study of an urban multimodal transportation system in Chicago, Illinois. Transportation research record, 2601(1), 99-109. DOI: 10.3141/2601-12 (in English).
https://doi.org/10.3141/2601-12
29. Shanon, C. (1948). A mathematical theory of communication. The Bell systems technical journal, 27, Retrieved from: https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/en... (in English).
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
30. Kieu, L. M., Bhaskar, A., & Chung, E. (2015). Public transport travel-time variability definitions and monitoring. Journal of Transportation Engineering, 141(1), 04014068. DOI: 10.1061/(asce)te.1943-5436.0000724 (in English).
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000724
31. Kim, J., & Mahmassani, H. S. (2015). Compound Gamma representation for modeling travel time variability in a traffic network. Transportation Research Part B: Methodological, 80, 40-63. DOI: 10.1016/j.trb.2015.06.011 (in English).
https://doi.org/10.1016/j.trb.2015.06.011
32. Arango-Serna, M. D., Serna-Urán, C. A., & Patiño-Rivera, B. E. (2017). Gestión de pedidos de medicamentos oncológicos usando programación estocástica. Dyna, 84(201), 59-67. DOI: 10.15446/dyna.v84n201. 50467 (in Spanish).
https://doi.org/10.15446/dyna.v84n201.50467
33. Mo, B., Zhao, Z., Koutsopoulos, H. N., & Zhao, J. (2021). Individual mobility prediction: an interpretable activity-based hidden Markov approach. Retrieved from: http://arxiv.org/abs/2101.03996 (in English).
34. Jabari, S. E., & Liu, H. X. (2012). A stochastic model of traffic flow: Theoretical foundations. Transportation Research Part B: Methodological, 46(1), 156-174. DOI: 10.1016/j.trb.2011.09.006 (in English).
https://doi.org/10.1016/j.trb.2011.09.006
35. Bellocchi, L., Latora, V., & Geroliminis, N. (2021). Dynamical efficiency for multimodal time-varying transportation networks. Scientific reports, 11(1), 23065. DOI: 10.1038/s41598-021-02418-5 (in English).
https://doi.org/10.1038/s41598-021-02418-5