ЧИСЕЛЬНЕ ДИФЕРЕНЦІЮВАННЯ ТАБЛИЧНИХ ФУНКЦІЙ У ДОВІЛЬНО РОЗТАШОВАНИХ ВУЗЛАХ ІНТЕРПОЛЯЦІЇ

https://doi.org/10.23939/ujit2023.01.025
Надіслано: Квітень 20, 2023
Прийнято: Травень 02, 2023

Цитування за ДСТУ: Грицюк Ю. І., Тушницький Р. Б. Чисельне диференціювання таблично-заданих функцій у довільно розташованих вузлах інтерполяції. Український журнал інформаційних технологій. 2023. Т. 5, № 1. С. 25–41.

Citation APA: Hrytsiuk, Yu. I., & Tushnytskyy, R. B. (2023). Numerical differentiation of table-given functions at arbitrarily located interpolation nodes. Ukrainian Journal of Information Technology, 5(1), 25–41. https://doi.org/10.23939/ujit2023.01.025

1
Національний університет «Львівська політехніка»
2
Національний університет "Львівська політехніка", м. Львів, Україна

Розроблено методику чисельного диференціювання таблично-заданих функцій з використанням многочлена Тейлора n-го степеня, яка дає можливість обчислювати похідні k-го порядку (k £ n) у будь-яких точках між довільно розташованими вузлами інтерполяції від однієї, двох і багатьох незалежних змінних. Проаналізовано останні дослідження та публікації, що дало змогу встановити складність задачі обчислення похідних від функції за значеннями незалежних змінних на деякому інтервалі значень таблично-заданої функції. Наведено постановку задачі чисельного диференціювання таблично-заданих функцій з використанням многочлена Тейлора n-го степеня від однієї, двох і багатьох незалежних змінних. Встановлено, що будь-яку таблично-задану функцію спочатку потрібно згладити деякою функцією, аналітичний вираз якої є глобальним (локальним) інтерполяційним многочленом або многочленом, який отримано за МНК із деякою похибкою. Під похідною від такої таблично-заданої функції розуміють похідну від її інтерполянти. Розроблено метод чисельного диференціювання таблично-заданих функцій, сутність якого зводиться до добутку вектора-рядка Тейлора n-го степеня на матрицю k-го порядку його диференціювання (k £ n) і на вектор-стовпець коефіцієнтів відповідної інтерполянти.

Наведено деякі постановки задач чисельного диференціювання таблично-заданих функцій з використанням многочлена Тейлора n-го степеня, відповідні алгоритми їх розв’язання та конкретні приклади реалізації. Встановлено, що для обчислення похідної k-го порядку від таблично-заданої функції за прийнятим значенням незалежної змінної потрібно виконати такі дії: за даними таблиці сформувати матричне рівняння, розв’язати його та отримати значення коефіцієнтів інтерполянти; підставити у відповідний матричний вираз коефіцієнти інтерполянти та значення незалежної змінної та виконати дії множення матриць, вказані у виразі. Здійснено перевірку правильності виконання розрахунків із використанням відповідних центральних різницевих формул. Встановлено, що обчислені похідні k-го порядку з використанням формул центральних скінченних різниць практично збігаються зі значеннями, отриманими за допомогою інтерполяційного многочлена Тейлора n-го степеня, тобто значення похідних обчислено правильно.

  1. Abinash Nayak. (2020). A new regularization approach for numerical differentiation. Inverse Problems in Science and Engineering, 28(13), 1747-1772. https://doi.org/10.1080/17415977.2020.1763983
  2. Andrei D. Polyanin, & Alexander V. Manzhirov. (1998). Handbook of Integral Equations: Second Edition (Handbooks of Mathematical Equations). CRC Press, Boca Raton, 1142 p. URL: https://www.amazon.com/Handbook-Integral-Equations-Handbooks-Mathematica...
  3. Andrunyk, V. A. (2019). Numerical methods in computer sciences. Lviv: New World-2000, Vol. 1, 470 p. [In Ukrainian.
  4. Andrunyk, V. A., Vysotska, V. A., & Pasichnyk V. V. (Ed.), et al. (2018). Numerical methods in computer science: textbook. Issue 2. Lviv: Novy svit-2000, 536 p. [In Ukrainian].
  5. Andrunyk, V. A., Vysotska, V. A., Pasichnyk, V. V., et al. (2018). Numerical methods in computer science: textbook. Edited by V. V. Pasichnyk. Lviv: New World-2000, Vol. 2, 536 p. [In Ukrainian].
  6. Bakhvalov, Ya. S., Zhidkov, I. L., & Kobelkov, G. M. (2002). Numerical methods. Moscow: Laboratory of basic knowledge, 632 p. [In Russian].
  7. Balashova, S. D. (1992). Numerical methods: tutorial. In two parts. Kyiv: NMK VO, Part 1, 280 p., Part 2, 328 p. [In Ukrainian].
  8. Bang Hu, & Shuai Lu. (2012). Numerical differentiation by a Tikhonov regularization method based on the discrete cosine transform. Applicable Analysis, 91(1), 719–736. https://doi.org/10.1080/00036811.2011.598862
  9. Ben Adcock, Daan Huybrechs, & Jesús Martín-Vaquero. (2014). On the Numerical Stability of Fourier Extensions. Foundations of Computational Mathematics, 14, 635–687. https://doi.org/10.1007/s10208-013-9158-8
  10. Binbin Yin, & Yuzhang Ye. (2006). Recovering the local volatility in Black–Scholes model by numerical differentiation. Applicable Analysis, 85(6–7), 681–692. https://doi.org/10.1080/00036810500475025
  11. Boyko, L. T. (2009). Fundamentals of numerical methods: a study guide. Dnipropetrovsk: DNU Publishing House, 244 p. [In Ukrainian].
  12. Branovytska, S. V., Medvedev, R. B., & Fialkov, Y. Ya. (2004). Computational mathematics and programming: textbook. Kyiv: IOC Publishing House "Polytechnic", 220 p. [In Ukrainian].
  13. Cheng, J., Jia, X. Z., & Wang, Y. B. (2007). Numerical differentiation and its applications. Inverse Problems in Science and Engineering, 15(1), 339-357. https://doi.org/10.1080/17415970600839093
  14. Chu-Li Fu, Xiao-Li Feng, Zhi Qian. (2010). Wavelets and high order numerical differentiation. Applied Mathematical Modelling, 34(11), 3008–3021. https://doi.org/10.1016/j.apm.2010.01.009
  15. Demkiv, I. I. (2013). Interpolation of nonlinear operators on a continuous set of nodes. Abstract of Doctoral Dissertation for Candidate of Physics and Mathematics Sciences (01.01.07 – Computational mathematics). Ihor Ivanovich Demkiv. Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine, 39 p. [In Ukrainian].
  16. Diego A. Murio. (1993). The Mollification Method and Numerical Solution of Ill-posed Problems. New York: John Wiely & Sons, 254 p. https://doi.org/10.1002/9781118033210
  17. Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of Inverse Problems. Mathematics and Its Applications, 375, Kluwer Academic Publishers Group, Dordrecht. https://doi.org/10.1007/978-94-009-1740-8
  18. Esterby, O., & Zlatev, Z. (1987). Direct methods of sparse matrices. Translation by Hakim Ikramov. Moscow: Mir Publishing House, 118 p. [In Russian].
  19. Feldman, L. P. (2000). Numerical methods and mathematical packages. Solving problems in the Machematica-3 package. Donetsk: Donetsk GTU, 96 p. [In Russian].
  20. Feldman, L. P., Petrenko, A. I., & Dmytrieva, O. A. (2006). Numerical methods in computer science: textbook. Kyiv: BHV Publishing Group, 474 p. [In Ukrainian].
  21. Filts, R. V. (1994). Calculation of Taylor and Fourier polynomials and their derivatives. Synopsis of lectures on the subject "Mathematical problems of electromechanics" for students. special 1801 "Electromechanics". Lviv: State University "Lviv Polytechnic", 24 p. [In Ukrainian].
  22. Filts, R. V. (2010). Equilibrium calculus: monograph. Lviv: LDINTU named after Vyacheslav Chornovol, 184 p. [In Ukrainian].
  23. Filtz, R. V. (1994). Differentiation of tabular functions. Synopsis of lectures on the subject "Mathematical problems of electromechanics" for students of the specialty 1801 "Electromechanics". Typescript edition of the "Electric Machines" department. Lviv: State University "Lviv Polytechnic", 52 p. [In Ukrainian].
  24. Filz, R. V., Kotsyuba, M. V., & Hrytsiuk, Yu. I. (1991). Algorithm for computing the Taylor polynomial and its derivatives on a computer. Izvestiya vuzov. Electromechanics, No 5, 5–10. [In Russian].
  25. Goncharov, O. A., Vasylieva, L. V., & Yunda, A. M. (2020). Numerical methods of solving applied problems: textbook. Sumy: Sumy State University, 142 p. [In Ukrainian].
  26. Hanke M, Scherzer O. (1998). Error analysis of an equation error method for the identification of the diffusion coefficient in a quasi-linear parabolic differential equation. SIAM Journal on Applied Mathematics, 59(3), 1012–1027. https://doi.org/10.1137/S0036139997331628
  27. Hanke, M., & Scherzer, O. (2001). Inverse Problems light: Numerical differentiation. American Mathematical Monthly, 108(6), 512–521. https://doi.org/10.2307/2695705
  28. Herbert Egger, & Heinz W. Engl. (2005). Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Problems, 21(3), 1027–1045. https://doi.org/10.1088/0266-5611/21/3/014
  29. Hrytsiuk, Yu. I. (2014). Computational methods and models in scientific research: monograph. Lviv: LSU BZD Publishing House. 288 p. [In Ukrainian].
  30. Hrytsiuk, Yu. I., & Havrysh, V. I. (2022). Interpolation of table-given functions by Fourier polynomial. Scientific Bulletin of UNFU, 32(1), 88–102. https://doi.org/10.36930/40320414
  31. Hrytsiuk, Yu. I., & Havrysh, V. I. (2022). Numerical differentiation of periodic tabular-specified functions using the Fourier polynomial. Scientific Bulletin of UNFU, 32(5), 69–79. https://doi.org/10.36930/40320410
  32. Hrytsiuk, Yu. I., & Tushnytskyy, R. B. (2022). Interpolation of tabular functions from one independent variable using the Taylor polynomial. Ukrainian Journal of Information Technology, 4(2), 01–17. https://doi.org/10.23939/ujit2022.02.001
  33. Huilin Xu, & Jijun Liu. (2010). Stable numerical differentiation for the second order derivatives. Advances in Computational Mathematics, 33, 431–447. https://doi.org/10.1007/s10444-009-9132-9
  34. Jane Cullum. (1971). Numerical differentiation and regularization. SIAM Journal on Numerical Analysis, 8(2), 254–265. https://doi.org/10.1137/0708026
  35. John P. Boyd. (2002). A Comparison of Numerical Algorithms for Fourier Extension of the First, Second, and Third Kinds. Journal of Computational Physics, 178(1), 118-160. https://doi.org/10.1006/jcph.2002.7023
  36. Kopcha-Horyachkina, G. E. (2011). Numerical methods in computer science: educational and methodological manual, Part 1. Uzhgorod: Publishing House of Zakarpattia State University, 76 p. [In Ukrainian].
  37. Krylyk, L. V., Bogach, I. V., & Lisovenko, A. I. (2019). Numerical Methods. Numerical integration of functions: tutorial. Vinnytsia: VNTU, 74 p. [In Ukrainian].
  38. Krylyk, L. V., Bogach, I. V., & Prokopova, M. O. (2013). Computational mathematics. Interpolation and approximation of tabular data: tutorial. Vinnytsia: VNTU, 111 p. [In Ukrainian].
  39. Kvetny, R. N., & Bogach, I. V. (2003). Interpolation of the function of two variables according to the Lagrange method. Bulletin of the Vinnytsia Polytechnic Institute, No 6, 365–368.
  40. Leevan Ling. (2006). Finding Numerical Derivatives for Unstructured and Noisy Data by Multiscale Kernels. SIAM Journal on Numerical Analysis, 44(1). https://doi.org/10.1137/050630246
  41. Lyon, M., Picard, J. (2014). The Fourier approximation of smooth but non-periodic functions from unevenly spaced data. Advances in Computational Mathematics, 40, 1073–1092. https://doi.org/10.1007/s10444-014-9342-7
  42. Makarov V. L., Demkiv I. I. (2012). Interpolating integral continued fractions that do not require the substitution rule. Abstracts of the report in Kamianets-Podilsk, May 28 – June 3, 2012. Kyiv, pp. 63–64. [In Ukrainian].
  43. Mamchuk, V. I. (2015). Numerical methods: tutorial. Kyiv: National Aviation University, 388 p. [In Ukrainian].
  44. Markus Hegland, & Robert S. Anderssen. (2005). Resolution enhancement of spectra using differentiation. Inverse Problems, 21, 915. https://doi.org/10.1088/0266-5611/21/3/008
  45. Martin Hanke, & Otmar Scherzer. (2001). Inverse Problems light: Numerical differentiation. The American Mathematical Monthly, 108(6), 512–521. https://doi.org/10.1080/00029890.2001.11919778
  46. Murio, D. A., Mejia, C. E., & Zhan, S. (1998). Discrete mollification and automatic numerical differentiation. Computers & Mathematics with Applications, 35(5), 1–13. https://doi.org/10.1016/S0898-1221(98)00001-7
  47. Ovchinnikov, P. F. (Ed.), Lisitsyn, B. M., & Mikhailenko, V. M. (1989). Higher mathematics. Kyiv: High school, 679 p. URL: http://pdf.lib.vntu.edu.ua/books/2015/Ovchin_P2_2004_792.pdf
  48. Pissanetzky, Sergio. (1988). Sparse Matrix Technology. Translation from English. Moscow: Mir Publishing House, 410 p. [In Russian].
  49. Qian, Z., Fu, C. L., Xiong, X. T., & Wei, T. (2006). Fourier truncation method for high order numerical derivatives. Applied mathematics and computation, 181(2), 940–948. https://doi.org/10.1016/j.amc.2006.01.057
  50. Ramm, A. G., & Smirnova, A. B. (2001). On stable numerical differentiation. Mathematics of Computation, Vol. 70, 1131–1153. https://doi.org/10.1090/S0025-5718-01-01307-2
  51. Rodrigo B. Platte, Lloyd N. Trefethen, & Arno B. J. Kuijlaars. (2011). Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples. SIAM Review, 53(2), 308-318. URL:  https://www.jstor.org/stable/23065166
  52. Rudolf Gorenflo, & Sergio Vessella. (1991). Abel Integral Equations: Analysis and Applications. Lecture Notes in Mathematics, 1461. Berlin: Springer, 1991st Edition, 232 p. URL: https://www.amazon.com/Abel-Integral-Equations-Applications-Mathematics/...
  53. Soyoung Ahn, U. JinChoi, & Alexander G. Ramm. (2006). A scheme for stable numerical differentiation. Journal of Computational and Applied Mathematics, 186(2), 325-334. https://doi.org/10.1016/j.cam.2005.02.002
  54. Stanley R. Deans. (2007). The Radon Transform and Some of Its Applications (Dover Books on Mathematics). Dover Publications; Illustrated edition, 304 p. URL: https://www.amazon.com/Radon-Transform-Applications-Dover-Mathematics/dp...
  55. Sviridenko, A. B. (2017). Direct multiplicative methods for sparse matrices. Newton methods. Computer research and modeling, Vol. 9 No. 5, 679−703. https://doi.org/10.20537/2076-7633-2017-9-5-679-703
  56. Tsegelyk, H. G. (2004). Numerical methods: textbook for students. Lviv: Publishing House of the Lviv National University named after Ivan Franko, 407 p. [In Ukrainian].
  57. Tsegelyk, H. G. (2004). Numerical methods: textbook for university students. Lviv National University named after Ivan Franko. Lviv, 407 p. [In Ukrainian].
  58. Vasylyshyn, T. V., Goy, T. P., & Fedak, I. V. (2014). Integral equations: a study guide. Ivano-Frankivsk: Simyk, 222 p. URL: https://kmfa.pnu.edu.ua/wp-content/uploads/sites/64/2019/12/Василишин-Т.В.-Гой-Т.П.-Федак-І.В.-Інтегральні-рівняння.pdf
  59. Wan, X. Q., Wang, Y. B., & Yamamoto, M. (2006). Detection of irregular points by regularization in numerical differentiation and application to edge detection. Inverse Problems, 22(3), 1089. https://doi.org/10.1088/0266-5611/22/3/022
  60. Wang, Y. B., & Wei, T. (2005). Numerical differentiation for two-dimensional scattered data. Journal of Mathematical Analysis and Applications, 312(1), 121-137. https://doi.org/10.1016/j.jmaa.2005.03.025
  61. Wang, Y. B., Jia, X. Z., & Cheng, J. (2002). A numerical differentiation method and its application to reconstruction of discontinuity. Inverse Problems, 18(6), 1461. https://doi.org/10.1088/0266-5611/18/6/301
  62. Wei, T., & Hon, Y. C. (2007). Numerical differentiation by radial basis functions approximation. Advances in Computational Mathematics, 27(3), 247–272. https://doi.org/10.1007/s10444-005-9001-0
  63. Wei, T., Hon, Y, C., & Wang, Y. B. (2005). Reconstruction of numerical derivatives from scattered noisy data. Inverse Problems, 21(2), 657–672. https://doi.org/10.1088/0266-5611/21/2/013
  64. Weidong Chen. (2021). Regularized derivative interpolation for two dimensional band-limited functions. Signal Processing, 184, 107943. https://doi.org/10.1016/j.sigpro.2020.107943
  65. Xie, O., Zhao Z. Y. (2013). Numerical differentiation of 2d functions by a mollification method based on Legendre expansion. International Journal of Computer Science, Vol. 10(1), 729–734. URL: https://ijcsi.org/papers/IJCSI-10-1-2-729-734.pdf
  66. Yang, Lu. (2008). A perturbation method for numerical differentiation. Applied mathematics and computation, 199(1), 368–374. https://doi.org/10.1016/j.amc.2007.09.066
  67. Yong-Fu Zhang, & Chong-Jun Li. (2019). A class of multistep numerical difference schemes applied in inverse heat conduction problem with a control parameter. Inverse Problems in Science and Engineering, 27(7), 887–942. https://doi.org/10.1080/17415977.2018.1501370
  68. Zewen Wang, & Rongsheng Wen (2010). Numerical differentiation for high orders by an integration method. Journal of Computational and Applied Mathematics, 234(3), 941-948. https://doi.org/10.1016/j.cam.2010.01.056
  69. Zhenyu Zhao, & Zehong Meng. (2010). Numerical differentiation for periodic functions. Inverse Problems in Science and Engineering, 18(7), 957-969. https://doi.org/10.1080/17415977.2010.492517
  70. Zhenyu Zhao, Zehong Meng, & Guoqiang He. (2009). A new approach to numerical differentiation. Journal of Computational and Applied Mathematics, 232(2), 227–239. https://doi.org/10.1016/j.cam.2009.06.001
  71. Zhenyu Zhao, Zehong Meng, Li Xu, & Junfeng Liu. (2009). A New Mollification Method for Numerical Differentiation of 2D Periodic Functions. IEEE International Joint Conference on Computational Sciences and Optimization, 24-26 April 2009, (pp. 205-207), Sanya, China. https://doi.org/10.1109/CSO.2009.174
  72. Zhenyu Zhao. (2010). A truncated Legendre spectral method for solving numerical differentiation. International Journal of Computer Mathematics, 87(16), 3209–3217. https://doi.org/10.1080/00207160902974404
  73. Zygmund, Antoni (Author), Fefferman, Robert A. (Ed.). (2002). Trigonometric series, I, II, Cambridge Mathematical Library (3rd ed.). Cambridge University Press, 784 p. URL: https://www.amazon.com/Trigonometric-Cambridge-Mathematical-Library-Zygm...