Approximate calculation of natural frequencies of oscillations of the plate with variable cross-section of the discrete-continuous inter-resonance vibrating table

https://doi.org/10.23939/ujmems2022.02.041
Надіслано: Квітень 12, 2022
Переглянуто: Травень 10, 2022
Прийнято: Травень 30, 2022
1
Національний університет “Львівська політехніка”
2
Національний університет "Львівська політехніка"
3
Department of Designing and Operation of Machines
4
Національний університет "Львівська політехніка"

 Problem statement.  To ensure highly efficient inter-resonance modes of operation of vibrating equipment, the oscillating masses of the system must have certain inertia-rigid parameters, as well as a certain frequency of natural oscillations. The disadvantage of highly efficient inter-resonance oscillatory systems is that the third reactive mass must be small, and therefore the use of complex and large structures is impossible. Therefore, it is best to use the reactive mass as a continuous section. The continuous  section,  which  is  a  flexible  body,  optimally  combines  inertial  and  rigid  parameters. Scientific works have already considered the design of the vibrating table, in which the continuous section  is  an  ordinary  rectangular  plate  hinged  in  the  intermediate  mass.  This  decision  looks  quite promising.  However,  likely,  the  rectangular  shape  of  the  plate  is  not  the  best  option  to  ensure maximum  energy  efficiency.  Purpose.  Extend  the  method  of  calculating  the  natural  frequency  of oscillations  of  the  plates  by  the  approximate  Rayleigh-Ritz  method  using  the  general  hyperboloid equation to plates with variable cross-section for the proposed types of plates and check the results with the calculation in Ansys software. Methodology.  The calculations of the plates were performed using the basic principles of the theory of oscillations, in particular the Rayleigh-Ritz method in the software product MathCAD. Findings (results) and originality (novelty). Two types of elastic plates with  variable  cross-sections  are  considered.  In  the  first  case,  the  shape  of  the  plate  was  given  by quadratic functions, in the second case, it was described by trigonometric functions of cosine. In both cases, the same conditions of attachment in the intermediate mass were observed. The calculation of the first natural frequency of oscillations of the considered plates was performed using the approximate Rayleigh-Ritz method with the assumption that the deflection of the plates occurs on the surface of the hyperboloid.  The  reliability  of  the  obtained  results  was  verified  by  numerical  calculation  in  the software product Ansys. Practical value. It is assumed that the proposed types of plates can increase the dynamic potential of the vibrating machine. Scopes of further investigations. For further study of the considered types of plates as a continuous section of the inter-resonance vibrating machine, it is necessary to calculate their deflections at forced oscillations. 

[1]  O. Lanets, Osnovy rozrakhunku ta konstruyuvannya vibratsiynykh mashyn. Knyha 1. Teoriya ta praktyka stvorennya vibratsiynykh mashyn z harmoniynym rukhom robochoho orhana [Fundamentals of analysis and design of vibrating machines. Book 1. Theory and Practice of Development of Vibratory Machines with Harmonic Motion of the Working Element Body]. Lviv, Ukraine: Lviv Polytechnic Publishing House, 2018. [in Ukrainian]. 
[2]  O.  Lanets,  P.  Maistruk,  "Obhruntuvannya  parametriv  trymasovoyi  mizhrezonansnoyi  vibratsiynoyi mashyny z inertsiynym pryvodom" ["Adjustment of parameters of three – mass interresonant vibrating machines with an inertial exciters"], Industrial Process Automation in Engineering and Instrumentation, vol. 53, pp. 13-22, 2019. [in Ukrainian]. 
[3]  O.  Lanets,  O.  Kachur,  V.  Borovets,  P.  Dmyterko,  I.  Derevenko,  A.  Zvarich,  "Vstanovlennya  vlasnoyi chastoty kontynualʹnoyi dilyanky mizhrezonansnoyi vibromashyny z vykorystannyam nablyzhenoho metodu Releya-Rittsa"  ["Establishment  of  the  original  frequency  of  the  continual  section  of  the  interreson  research  machine Rayleigh–Ritz method"], Industrial Process Automation in Engineering and Instrumentation, vol. 54, pp. 5-15, 2020. [in Ukrainian]. 
[4] P. Maistruk, O. Lanets, V. Stupnytskyy, "Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode", Strojnícky časopis - Journal of Mechanical Engineering, vol. 71(2), pp. 151-166, 2021. 
[5] A. Saeed, H. Hassan, E. Wael, "Vibration attenuation using functionally graded material", World Academy of Science, Engineering and Technology vol. 7(6), pp. 1111-1120, 2013.  
[6]  A.K.  Sharma,  P.  Sharma,  P.S.  Chauhan,  S.S  Bhadoria,  "Study  on  Harmonic  Analysis  of  Functionally Graded  Plates  Using  Fem",  International  Journal  of  Applied  Mechanics  and  Engineering  vol.  23(4),  pp.941-961, 2018.  
[7] K. Taehyun, L. Usik, "Vibration Analysis of Thin Plate Structures Subjected to a Moving Force Using Frequency-Domain Spectral Element Method", Shock and Vibration vol. 2018, pp. 1-27, 2018.  
[8] J. N. Reddy, "Theory and Analysis of Elastic Plates and Shells", 2-nd ed., CRC Press, Boca Raton, USA, 2007. 
[9]S. P. Timoshenko, S. Woinowsky-Krieger, "Theory of Plates and Shells", 2-nd ed., McGraw-Hill, New York, USA, 1959.  
[10] Y. P.  Sun, C. W. Min, J. Li, Z. L. Teng,  "The  Finite  Element  Analysis  of  Sandwich  Variable  Cross-Section Plate Bending Performance", Advanced Materials Research Vols. 335–336, pp. 659–662, 2011. 
[11]  M.  Ece,  M.  Aydogdu,  V.  Taskin,  "Vibration  of  a  variable  cross-section  beam",  Mechanics  Research Communications, vol. 34, pp. 78-84, 2007. 
[12] S. K. Jena, S. Chakraverty, "Free Vibration Analysis of Variable Cross-Section Single-Layered Graphene Nano-Ribbons (SLGNRs) Using Differential Quadrature Method", Frontiers in Built Environment, vol. 4, article 63, 2018.  
[13] M. Boiangiu, V. Ceausu, C.D. Untaroiu, "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", Journal of Vibration and Control, vol. 22(11) pp. 2591-2602, 2016. 
[14] E. Demir, H. Çallioğlu, M. Sayer, "Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation", Science and Engineering of Composite Materials, vol. 20(4), pp. 359-370, 2013. 
[15] S. Zolkiewski, "Vibrations of beams with a variable cross-section fixed on rotational rigid disks", Latin American Journal of Solids and Structures, vol. 10, pp. 39-57, 2013.  
[16] J. Feng, Z. Chen, S. Hao, K. Zhang, "An Improved Analytical Method for Vibration Analysis of Variable Section Beam", Mathematical Problems in Engineering, vol. 2020, article ID 3658146, 2020.