Investigation of the properties of nickel-filled copolymers of polyvinylpyrrolidone and hydrogel materials based on them

2021;
: 213-218
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The properties of nickel-filled copolymers of polyvinylpyrrolidone with 2-hydroxyethylmethacrylate and hydrogel materials based on them, obtained by the method of polymerization with simultaneous reduction of metal ions have been investigated. The influence of polymer-monomer composition formulation, content of metal-filler and conditions of Ni2+ reduction reaction on physico-mechanical, sorption, electrical and magnetic characteristics of obtained materials has been established. It has been found that Ni(0) particles in the composites’ structure on the basis of polyvinylpyrrolidone with 2-hydroxyethylmethacrylate copolymers demonstrate catalytic activity, particularly, in the hydrolysis process of sodium borohydride.

1. Nicolais, L., & Carotenuto, G. (2005). Metal-polymer nanocomposites; John Wiley & Sons: New Jersey, 304. doi:10.1002/0471695432.
https://doi.org/10.1002/0471695432
2. Hanemann, T., & Szabó, D. V. (2010). Polymer-Nanoparticle composites: from synthesis to modern applications. Materials, 3, 3468-3517. https://doi.org/ 10.3390/ ma3063468.
https://doi.org/10.3390/ma3063468
3. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., & Kuznetsova, M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials. 7th International Conference Nanomaterials: Application & Properties (NAP), Zatoka, Ukraine, September 10-15 2017; IEEE, Odessa, Ukraine. doi: 10.1109/NAP.2017.8190265.
https://doi.org/10.1109/NAP.2017.8190265
4. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., & Soares, P. (2018). Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels, 4(2), 54. doi:10.3390/gels4020054.
https://doi.org/10.3390/gels4020054
5. Li, H., Yang, P., Pageni, P., Tang, Ch. (2017). Recent Advances in Metal-Containing Polymer Hydrogels. Macromolecular Rapid Communications, 38(14), 1-20. DOI: 10.1002/marc.201700109.
https://doi.org/10.1002/marc.201700109
6. Li, X., Rombouts, W., Gucht, J., Vries, R., & Dijksman, J. A. (2019). Mechanics of composite hydrogels approaching phase separation. PLoS ONE, 14(1), e0211059. https://doi.org/10.1371/journal.pone. 0211059.
https://doi.org/10.1371/journal.pone.0211059
7. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., & Loh, X. J. (2015). Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2(1-2), 1400010. doi:10.1002/advs.201400010.
https://doi.org/10.1002/advs.201400010
8. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956-1973. doi: 10.3390/ma12121956.
https://doi.org/10.3390/ma12121956
9. Grytsenko, O. M., Naumenko, O. P., Sube¬rlyak, O. V., Dulebova, L., & Berezhnyy, B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25-32. doi: 10.32434/0321-4095-2019-128-1-25-32
https://doi.org/10.32434/0321-4095-2019-128-1-25-32
10. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201-207. https://doi.org/10.1016/ j.apcata.2010.07.004.
https://doi.org/10.1016/j.apcata.2010.07.004
11. Ozay, O., Aktas, N., Inger, E., & Sahiner, N. (2011). Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 36, 1998-2006. https://doi.org/10.1016/j.ijhydene.2010.11.045.
https://doi.org/10.1016/j.ijhydene.2010.11.045
12. Grytsenko, O., Spiśak, Е., Dulebová, L., Moravskii, V., & Suberlyak, О. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97-101. https://doi.org/10.4028/www. scientific. net/MSF.818.97.
https://doi.org/10.4028/www.scientific.net/MSF.818.97
13. Suberlyak, О., Grytsenko, O., Hischak, Kh., & Hnatchuk, N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289-294. http://ena.lp.edu.ua:8080/handle/ntb/23488.
https://doi.org/10.23939/chcht07.03.289
14. Sahiner, N., Seven, F., & Al-lohedan, H. (2015). Superporous Cryogel-M (Cu, Ni, and Co) Composites in Catalytic Reduction of Toxic Phenolic Compounds and Dyes from Wastewaters. Water Air and Soil Pollution, 226(4), 10-13. https://doi.org/10.1007/s11270-014-2247-8.
https://doi.org/10.1007/s11270-014-2247-8
15. Grytsenko, O. M., Suberlyak, O. V., Dulebova L., Gaydos I., & Berezhnyy B. V. (2020). Osoblyvosti formuvannya struktury nikelʹnapovnenykh kopolimeriv polivinilpirolidonu pid chas polimeryzatsiyi z odnochasnym vidnovlennyam Ni2+. Chemistry, Technology and Application of Substances, 3(2), 127-134. (in Ukrainian).
https://doi.org/10.23939/ctas2020.02.127
16. Grytsenko, O. M., Suberlyak, O. V, & Hishchak, Kh. Ya. (2015). Zakonomirnosti formuvannya metalonapovnenykh hidroheliv ta plivkovykh materialiv. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 20-25. (in Ukrainian).
17. Lushcheykin, G. A. (1988). Metody issledovaniya elektricheskikh svoystv polimerov. M.: Khimiya, 158 s. (in Russian).
18. Kondyr A. I., Borysyuk A. K., Pazdriy, I. P., & Shvachko S. H. (2004). Zastosuvannya vibratsiynoho mahnitometra dlya fazovoho analizu spetsialʹnykh staley ta splaviv. Vybratsyy v tekhnyke y tekhnolohiyakh, 2(34), 41-43. (in Ukrainian).
19. Suberlyak, O. V., Skorokhoda, V. Y., & Hrytsenko, O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236-238. (in Ukrainian).
20. Liu, T.-Yu., Hu, S.-H., Liu, Ts.-Y., Liu, D.-M., & Chen, S.-Y. (2006). Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 22(14), 5974-5978. https://doi.org/10.1021/la060371e.
https://doi.org/10.1021/la060371e
21. Ajmal, M., Aftab, F., Bibi, I, Iqbal, M., Ambreen, J., Ahmad, H. B., Akhtar, N., Haleem, A., & Siddiq, M. (2019). Facile synthesis of porous anionic hydrogel embedded with nickel nanoparticles and evaluation of its catalytic performance for the rapid reduction of 4-nitrophenol. Journal of Porous Materials, 26, 281-290. https://doi.org/10.1007/s10934-018-0654-8
https://doi.org/10.1007/s10934-018-0654-8
22. Cai, H., Lu, P., & Dong, J. (2016). Robust nickel-polymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297-301. https://doi.org/10.1016/j.fuel.2015.11.011
https://doi.org/10.1016/j.fuel.2015.11.011