Fuel Characterization and Thermogravimetric Analysis of Melon (Citrullus colocynthis L.) Seed Husk

https://doi.org/10.23939/chcht10.04.493
Received: October 21, 2015
Revised: January 12, 2016
Accepted: March 12, 2016
Authors: 
Bemgba Nyakuma, Olagoke Oladokun, Yakubu Dodo, Syie Wong, Habibu Uthman and Muhamad Halim

Bemgba Nyakuma-1,2, Olagoke Oladokun-1,2, Yakubu Dodo-1, Syie Wong-2, Habibu Uthman-1 and Muhamad Halim-3

  1. Centre for Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
  2. Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
  3. Centre of Polymer Composite Research & Technology (PoCResT), Institute of Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia bbnyax1@gmail.com, bnbevan2@live.utm.my

The thermochemical fuel properties of melon seed husk (MSH) were characterized to examine its solid biofuel (SBF) potential for future bioenergy utilization. MSH is a cheap, abundant and renewable source of lignocellulosic waste generated from the extraction of vegetable oil from melon seeds. Thermochemical characterization was examined by proximate, ultimate, and thermogravimetric (TG-DTG) analyses, as well as Fourier transform infra-red (FT-IR) spectroscopy. The results showed that MSH exhibits significant volatile matter, fixed carbon, carbon and low nitrogen, sulphur and ash content with a heating value (HHV) of 19.02 MJ/kg. FT-IR analysis indicated functional groups for aliphatic, ester, ketone, alcohol, and aromatic compounds. Thermal decomposition of MSH occurred in three stages: drying (303–448 K), devolatization (448–673 K) and char degradation (673–1073 K).

[1] Achigan-Dako E., Fagbemissi R., Avohou H. et al.: Biotechnol. Agron. Soc. Environ, 2008, 12, 393.
[2] Ezeike G.: Int. J. Food Sci. Technol., 1988, 23, 511.
[3] FAO: FAOSTAT Statistics 2008-2013, 2015.
[4] Ajibola O., Eniyemo S., Fasina O. and Adeeko K.: J. Agr. Eng. Res., 1990, 45, 45.
[5] Foo K. and Hameed B.: Desalination Water Treatment, 2012, 47, 130.
[6] Van der Werf G., Morton D., DeFries R. et al.: Nature Geosci., 2009, 2, 737.
[7] Meinshausen M., Smith S., Calvin K. et al.: Climatic Change, 2011, 109, 213.
[8] Ramanathan V., Crutzen P., Kiehl J. and Rosenfeld D.: Science, 2001, 294, 2119.
[9] Godfray H., Beddington J., Crute I. et al.: Science, 2010, 327, 812.
[10] McMichael A., Powles J., Butler C. and Uauy R.: Lancet, 2007, 370, 1253.
[11] Change I.: Genebra, Suíça, 2001.
[12] Louis M. and Hess J.: Am. J. Prev. Med., 2008, 35, 527.
[13] Werle S.: Ecol. Chem. Eng. A, 2013, 20, 279.
[14] Ragauskas A., Williams C., Davison B. et al.: Science, 2006, 311, 484.
[15] Mosier N., Wyman C., Dale B. et al.: Bioresource Technol., 2005, 96, 673.
[16] Magdziarz A. and Werle S.: Waste Manage., 2014, 34, 174.
[17] Slopiecka K., Bartocci P. and Fantozzi F.: Appl. Energy, 2012, 97, 491.
[18] Damartzis T., Vamvuka D., Sfakiotakis S. and Zabaniotou A.: Bioresource Technol., 2011, 102, 6230.
[19] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press, New York 2013.
[20] Channiwala S. and Parikh P.: Fuel, 2002, 81, 1051.
[21] Vassilev S., Baxter D., Andersen L. and Vassileva C.: Fuel, 2010, 89, 913.
[22] Basu P.: Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic Press, New York 2010.
[23] Karimipour S., Gerspacher R., Gupta R. and Spiteri R.: Fuel, 2013, 103, 308.
[24] Probstein R. and Hicks R.: Synthetic Fuels: Courier Corporation, New York 2006.
[25] Yang H., Yan R., Chin T. et al.: Energ. Fuel., 2004, 18, 1814.
[26] Zapata B., Balmaseda J., Fregoso-Israel E. and Torres-Garcia E.: J. Therm. Anal. Calorim., 2009, 98, 309.
[27] Lopez-Velazquez M., Santes V., Balmaseda J. and Torres-Garcia E.: J. Anal. Appl. Pyrol., 2013, 99, 170.
[28] Yang H., Yan R., Chen H. et al.: Fuel, 2007, 86, 1781.
[29] McKendry P.: Bioresource Technol., 2002, 83, 37.
[30] Li L., Wang G., Wang S. and Qin S.: J. Therm. Anal. Calorim., 2013, 114, 1183.
[31] Acıkalin K.: J. Therm. Anal. Calorim., 2011, 105, 145.
[32] Ren S., Lei H., Wang L. et al.: Biosystems Eng., 2013, 116, 420.