Perspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites

2023;
: pp. 870 - 877
1
Lviv Polytechnic National University
2
Іnstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The paper analyzes the perspectives for natural sorbents to be used in environmental technologies. The object of the study is the clay rock from the left side of the upper Pivdennyi Bug river (in the vicinity of the Khmelnytskyi city). The rock was enriched in montmorillonite by centrifugation of a clay suspension to obtain the fraction with a size of less than 5∙10-6 m. The researchers defined the mineral composition of the enriched clay based on the findings of the X-ray diffraction and complex thermal analyses. The enriched clay was chemically activated with a 5% NaCl aqueous solution and physically activated with the action of ultrasound. Based on the results of the X-ray diffraction analysis, the cation exchange capacity (CEC) of enriched clays, both natural and activated by ultrasound, was found against the methylene blue (MB) dye. The findings of the X-ray diffraction and analysis supported the ability of the dye cations to be absorbed by the interlayer spacings of montmorillonite.

  1. Lazaruk, Y.; Karabyn, V. Shale gas in Western Ukraine: Perspectives, Resources, Environmental and Technogenic Risk of Production. Pet. Coal 2020, 62, 836–844. https://sci.ldubgd.edu.ua:8080/jspui/handle/123456789/7543
  2. Vaskina, I.; Plyatsuk, L.; Vaskin, R.; Ablieieva, I.; Sydorenko S. Patterns of Pollutants Distribution from Vehicles to the Roadside Ecosystems. In Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering; Springer, Cham.; pp 893–902. http://dx.doi.org/10.1007/978-3-030-22365-6_89
  3. Starodub, Y.; Karabyn, V.; Havrys, A.; Shainoga, I.; Samberg, A. Flood Risk Assessment of Chervonograd Mining-Industrial District. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX (Vol. 10783), Neale, C.M.U.; Maltese, A., Eds.; SPIE: Bellingham, Washington, 2018. https://doi.org/10.1117/12.2501928
  4. Tymchuk, I.; Shkvirko, O.; Sakalova, H.; Malovanyy, M.; Dabizhuk, T.; Shevchuk, O.; Matviichuk, O.; Vasylinych, T. Wastewater a Source of Nutrients for Crops Growth and Development. J. Ecol. Eng. 2020, 21, 88–96.http://dx.doi.org/10.12911/22998993/122188
  5. Rusyn, I.B.; Moroz, O.M.; Karabyn, V.V.; Kulachkovskyi, O.R.; Hudz, S.P. Biodegradation of oil Hydrocarbons by Candida yeast. J. Microbiol. 2003, 65, 36–42.
  6. Knysh, I.; Karabyn, V. Heavy Metals Distribution in the Waste Pile Rocks of Chervonogradska Mine of the Lviv-Volyn Coal Basin (Ukraine). Pollution Research 2014, 33, 663–670.
  7. Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273.https://doi.org/10.23939/chcht16.02.267
  8. Hyvlud, A.; Sabadash,V.; Gumnitsky, J.; Ripak, N. Statics and Kinetics of Albumin Adsorption by Natural Zeolite. Chem. Chem. Technol. 2019, 13, 95–100. https://doi.org/10.23939/chcht13.01.095
  9. Sabadash, V.; Gumnitsky, J.; Hyvlyud, A. Mechanism of Phosphates Sorption by Zeolites Depending on Degree of their Substitution for Potassium Ions. Chem. Chem. Technol. 2016, 10, 235–240. https://doi.org/10.23939/chcht10.02.235
  10. Danchenko, Y., Andronov, V.; Kariev, A.; Lebedev, V.; Rybka, E.; Meleshchenko, R.; Yavorska, D. Research into Surface Properties of Disperse Fillers Based on Plant Raw Materials. EasternEuropean J. Enterp. Technol. 2017, 5, 20–26. https://doi.org/10.15587/1729-4061.2017.111350
  11. Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
  12. Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386
  13. Kochubei, V.V.; Yaholnyk, S.G.; Kniaz, S.V.; Parashchuk, L.Y.; Malovanyy, M.S. Research into the Influence of Activation Conditions of Transcarpathian Clinoptilolite on its Adsorption Capacity. Voprosy khimii i khimicheskoi tekhnologii 2020, 4, 80–87. https://doi.org/10.32434/0321-4095-2020-131-4-80-87
  14. Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13, 372–376. https://doi.org/10.23939/chcht13.03.372
  15. Lagaly, G.; Ogawa, M.; Dekany, I. Clay Mineral Organic Interactions. In: Handbook of Clay Science; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds; Amsterdam: Elsevier, 2006; pp 309–377. https://doi.org/10.1016/S1572-4352(05)01010-X
  16. Rajkiran, R. T.; Kartic, C. K.; Upendra, N. Synthesis and Characterization of Novel Organo-Montmorillonites. Applied Clay Sci. 2008, 38, 203–208. https://doi.org/10.1016/j.clay.2007.05.008
  17. Mockovсiakova, A.; Orolinova, Z.; Skvarla, J. Enhancement of the Bentonite Sorption Properties. J. Hazard. Mater. 2010, 180, 274–281. https://doi.org/10.1016/j.jhazmat.2010.04.027
  18. Borgnino, L.; Avena, M.J.; De Pauli, C.P. Synthesis and Characterization of Fe(III) Montmorillonites for Phosphate Absorption. Colloids Surf. A: Physicochem. Eng. Asp. 2009, 341, 46–52. http://doi.org/10.1016/j.colsurfa.2009.03.037
  19. Menezes, R.R.; Marques, L.N.; Campos, L.A.; Ferreira, H.S.; Santana, L.N.L.; Neves, G.A. Use of Statistical Design to Study the Influence of CMC on the Rheological Properties of Bentonite Dispersions for Water-Based Drilling Fluids. Appl Clay Sci. 2010, 49, 13–20. https://doi.org/10.1016/j.clay.2010.03.013
  20. Vincenzi, S.; Panighel, A.; Gazzola, D.; Flamini, R.; Curioni A. Study of Combined Effect of Proteins and Bentonite Fining on the Wine Aroma Loss. J. Agric. Food Chem. 2015, 63, 2314–2320. https://doi.org/10.1021/jf505657h
  21. Ifa, L.; Wiyani, L.; Nurdjannah, N.; Muhammad, A.; Ghalib, T.; Ramadhaniar, S.; Kusuma, H.S. Analysis of Bentonite Performance on the Quality of Refined Crude Palm Oil's Color, Free Fatty Acid and Carotene: The Effect of Bentonite Concentration and Contact Time. Heliyon 2021, 7, e07230. https://doi.org/10.1016/j.heliyon.2021.e07230
  22. Krasinskyi, V.; Suberlyak, O.; Kochubei, V.; Jachowicz, T.; Dulebova, L.; Zemke, V. Nanocomposites Based on Polyamide and Montmorillonite Obtained from a Solution. Adv. Sci. Technol. Res. J. 2020, 14, 192–198. https://doi.org/10.12913/22998624/122297
  23. Mykhailova, V.A. Non-Metallic Minerals of Ukraine; Kyiv University Publishing House: Kyiv, 2007.
  24. Menier, A. Clays; Springer-Verlag: Berlin, Heidelberg, 2005.
  25. Malovanyi, M.S.; Petrushka, I.M. Ochyshchennia stichnykh vod pryrodnymy dyspersnymy sorbentamy; Department of Lviv Polytechnic, 2012.
  26. Salem, A.; Karimi, L. Physicochemical Variation in Bentonite by Sulfuric Acid Activation. Korean J. Chem. Eng. 2009, 26, 980–984. https://doi.org/10.1007/s11814-009-0162-2
  27. Boichuk, B.; Kuzyk, A.; Sysa, L.; Pastukhov, P.; Shuplat T. Wastewater Purification from Excess Phosphates Using Bentonite Activated by Microwave Radiation. J. Ecol. Eng. 2022, 23, 251–259. https://doi.org/10.12911/22998993/14713
  28. Dibrivnyi, V.M.; Serheiev, V.V.; Van-Chyn-Sian, Yu.Ia. Kurs koloidnoi khimii; Intelekt-Zakhid: Lviv, 2008.
  29. Tarasevich, Yu.I.; Ovcharenko, F.D. Adsorption on Clay Materials; Naukova dumka: Kyiv, 1975.
  30. Yaremchuk, Ya.V., Kochubei, V.V., Zinchuk, I.M., Malovanyi, M.S. Peculiarities of the Mineral Composition of Clays of Volino-Podillia (Surroundings of Khmelnytskyi). In The Newest Problems of Geology; Kharkiv, 2020; pp 117-119.
  31. Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals; New York, Oxford University Press, 1997.
  32. Powder diffraction file, Data cards, Inorganic section sets 1-34; JCPDS: Swarthmore, Pennsylvania, 1948–1984.
  33. Matkovskyi, O.; Kvasnytsia, V.; Naumko, I.; Bilonizhka, P; Hrechanovska, O.; Kvasnytsia, I.; Melnikov, V.; Popp, I.; Skakun, L.; Slyvko, Ye. et al. Mineraly Ukrainskykh Karpat. Sylikaty; Vydavnychyi tsentr LNU im. I. Franka: Lviv, 2011.
  34. Yaremchuk, Ya.; Kochubei, V. Features of Thermal Dehydration of Clay Minerals of Baden Gypsums from the Shchyrets and Sand Quarries. Mineralohichnyi zbirnyk 2010, 60, 106–115.
  35. Pansu, M; Gautheyrou, J. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods; Springer-Verlag Berlin Heidelberg, 2006.
  36. Saidov, B.Yu.; Alimov, U.K.; Ahmadzhonov, A.N.; Seytnazarov, A.R.; Namazov, Sh.S. The Question of the Prospects for the Use of Bentonite Clay as a Sorbent for the Purification of Various Types of Solutions. Short review. Int. j. appl. nat. sci. 2020, 1, 23–29. https://doi.org/10.24412/2181-144X-2020-1-23-30
  37. Wilson, J.; Cuadros, J.; Cressey, G. An In situ Time-Resolved XRD-PSD Investigation into Na-Montmorillonite Interlayer and Particle Rearrangement during Dehydration. Clays Clay Miner. 2004, 52, 180–191. https://doi.org/10.1346/CCMN.2004.0520204
  38. Churakov, S.V. Mobility of Na and Cs on Montmorillonite Surface under Partially Saturated Conditions. Environ. Sci. Technol. 2013, 47, 9816–9823. https://doi.org/10.1021/es401530n
  39. Novikova, L; Ayrault, P.; Fontaine, C.; Chatel, G.; Jérôme, F.; Belchinskaya, L. Effect of Low Frequency Ultrasound on the Surface Properties of Natural Aluminosilicates. Ultrason. Sonochem. 2016, 31, 598–609. https://doi.org/10.1016/j.ultsonch.2016.02.014
  40. Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6, 26–32. https://doi.org/10.15587/1729-4061.2017.116090
  41. Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and Mineralogy of Clay Minerals. Іn: Handbook of Clay Science; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds; Elsevier: Amsterdam, 2006; pp 19–86.