This paper presents an approach to improving mobile robot localization by filtering dynamic objects using camera image segmentation. The proposed algorithm integrates a Particle Filter with state-of-the-art computer vision techniques, specifically employing the YOLO model for segmentation, which effectively differentiates static elements of the environment from moving objects. This approach reduces the impact of noisy data and enhances localization accuracy in dynamic conditions, which is crucial for the reliable autonomous operation of mobile robots.
- Wei, Z., Yang, X. (2021). Mobile Robot Localization Using Fuzzy Neural Network Based Extended Kalman Filter. World Congress on Intelligent Control and Automation, 416–421. DOI: https//doi.org/10.1109/ WCICA.2011.5970654
- Boniardi F., Valada A., Rohit Mohan, Caselitz T., Burgard W. (2019). Robot Localization in Floor Plans Using a Room Layout Edge Extraction Network. IEEE/RSJ Inter- national Conference on Intelligent Robots and Systems (IROS), 5291 – 5297. DOI: https//doi.org/10.1109/IROS 40897.2019.8967847
- Zang, Z., Zheng, H., Betz, J., & Mangharam, R. (2023, May). Local_inn: implicit map representation and localization with invertible neural networks. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 11742-11748). IEEE. DOI: https//doi.org/ 10.1109/ICRA48891.2023.10161015
- Cabrera J., Román V., Gil A., Reinoso O., Payá L. (2024). An experimental evaluation of Siamese Neural Networks for robot localization using omnidirectional imaging in indoor environments. Artif Intell Rev 57, 198-215, DOI: https://doi.org/10.1007/s10462-024-10840-0
- Akai, N. (2023, May). SLAMER: Simultaneous Localization and Map-Assisted Environment Recognition. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6203-6209) IEEE.DOI: https://doi.org/10.1109/ICRA48891.2023.10160639
- [6] Zimmerman N., Sodano M., Marks E., Behley J., Stachniss C. (2023). Constructing Metric-Semantic Maps using Floor Plan Priors for Long-Term Indoor Localization. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1366 - 1372 DOI: https://doi.org/10.1109/IROS55552.2023.10341595
- Akai, N. (2023). Reliable Monte Carlo localization for mobile robots. Journal of Field Robotics, 40(3), 595-613. DOI: https://doi.org/10.1002/rob.22149
- Chen, Z., Li, K., Li, H., Fu, Z., Zhang, H., & Guo, Y. (2024). Metric localization for lunar rovers via cross-view image matching. Visual Intelligence, 2(1), 12. DOI: https://doi.org/10.1007/s44267-024-00045-y
- Mendez O., Hadfield S., Pugeault N., Bowden R. (2018). SeDARsemantic detection and ranging: Humans can localise without lidar, can robots? IEEE International Conference on Robotics and Automation (ICRA), 6053 – 6060, DOI: https://doi.org/10.1109/ICRA.2018.8461074
- Lin C., Li C., Furukawa Y., Wang W. (2018). Floorplan priors for joint camera pose and room layout estimation. IEEE/CVF International Conference on Computer Vision (ICCV), 5673 – 5682, DOI: https://doi.org/10.1109/ ICCV.2019.00577
- Unicomb J., Ranasinghe R., Dantanarayana L., Dissa- nayake G. (2018). A monocular indoor localiser based on an extended kalman filter and edge images from a co- nvolutional neural network. IEEE/RSJ International Con- ference on Intelligent Robots and Systems (IROS), 1 – 9, DOI: https://doi.org/10.1109/IROS.2018.8594337