Improving the Localization of Mobile Robot by Filtering Dynamic Objects Using Camera Image Segmentation
This paper presents an approach to improving mobile robot localization by filtering dynamic objects using camera image segmentation. The proposed algorithm integrates a Particle Filter with state-of-the-art computer vision techniques, specifically employing the YOLO model for segmentation, which effectively differentiates static elements of the environment from moving objects. This approach reduces the impact of noisy data and enhances localization accuracy in dynamic conditions, which is crucial for the reliable autonomous operation of mobile robots.