Modern Approaches to the Diagnosis of Neurological Disorders Using Artificial Neural Networks

2025;
: pp. 22 - 27
1
Kherson State University, Ukraine
2
Institute of Solid State Physics, University of Latvia, Latvia

The article explores the application of neuro- symbolic approaches utilizing artificial neural networks for diagnosing neurological disorders among individuals with autism spectrum conditions. It demonstrates how these networks can identify and enhance distinctive strengths, such as advanced pattern recognition and systematic reasoning, facilitating their integration into professional environments. The study emphasizes the importance of inclusive emp- loyment initiatives supported by modern diagnostic tools, while addressing ethical considerations, including data pri- vacy and non-discrimination. It proposes tailored educational and vocational programs and evaluates their potential impact on the legislative framework of Ukraine, aiming to reinforce policies designed to safeguard the rights of individuals with special needs.

  1. Mahadevkar, S. V., Kunduri, P., & Panigrahi,  B.  K. (2022). A review on machine learning styles in computer vision: Techniques and future directions. IEEE Access, 10, 107293–107329.             DOI:       https://doi.org/10.1109/ ACCESS.2022.3209825
  2. Іslam M.T., Zhou Z., Ren H., Badiei Khuzani M., Kapp D.,  Zou  J.C.,  Tian  L.,  Liao  J.C.,  &  Xing  L.  (2023).Revealing hidden patterns in deep neural network feature space continuum via manifold learning. Nature Commu- nications, 14, 8506. – DOI: https://doi.org/10.1038/ s41467-023-43958-w.
  3. Prentzas, N., Kakas, A., & Pattichis, C. S. (2023). Explainable AI applications in the medical domain: A systematic review. arXiv preprint arXiv:2308.05411. DOI: https://doi.org/10.48550/arXiv.2308.05411
  4. Hooshyar, D., Azevedo, R., & Yang, Y. (2024). Augmenting deep neural networks with symbolic edu- cational knowledge: Towards trustworthy and interpretable ai for education. Machine Learning and Knowledge Extraction, 6(1), 593-618. DOI: https://doi.org/10.3390/ make6010028.
  5. Letychevskyi, O., Tarasich, Y., & Peschanenko, V. (2023, September 7). Algebraic Modeling System for Supporting Research in Medicine and Pharmacology. In Proceedings of the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (Vol. 1, pp. 1093–1098). IEEE. DOI: https://doi.org/10.1109/ IDAACS58523.2023.10348778
  6. Hossain, D., & Chen, J. Y., A Study on Neuro-Symbolic Artificial Intelligence: Healthcare Perspectives, arXiv preprint, arXiv:2503.18213,                        2025.                                DOI: https://doi.org/10.48550/arXiv.2503.18213.
  7. Zhang, X., Zhou, Y., Wu, D., Sheng, Q., Riaz, S., Hu, M.,& Xiao, L. (2025). A survey on privacy-preserving caching at network edge: Classification, solutions, and challenges. ACM Computing Surveys, 57(5), 1–38. https://doi.org/10.1145/3706630
  8. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), Article 115. DOI:  https://doi.org/10.1145/3457607
  9. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. ISBN: 978‑0262035613.
  10. Thorpe, D., McKinlay, M., Richards, J., Sang, K., & Stewart, M. E. (2024). The lived experience of autistic adults in employment: A systematic search and synthesis. Autism in Adulthood, 6(4), 495–509. DOI: https://doi.org/10.1089/aut.2022.0114
  11. Yu, D., Yang, B., Liu, D., Wang, H., & Pan, S. (2023). Asurvey on neural-symbolic learning systems. Neural Networks, 166, 105-126. DOI: https://doi.org/10.1016/ j.neunet.2023.06.028
  12. Truex, S., Liu, L., Chow, K. H., Gursoy, M. E., & Wei, W. (2020). LDP-Fed: Federated learning with local differential privacy. In Proceedings of the 3rd International Workshop on Edge Systems, Analytics and Networking (pp. 61–66).ACM. DOI: https://doi.org/10.1145/3378679.3394533
  13. Brown, T., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.DOI: https://doi.org/10.5555/3495724.3495883.
  14. Yevdokymov, S. O. (2023).  Modern systems  of information protection (380 p.). Drukaryk. ISBN 978-617- 7901-89-9
  15. Van Rooij, I., & Baggio, G. (2021). Theory before the test: How to build high-verisimilitude explanatory theories in psychological science. Perspectives on Psychological Science, 16(4), 682-697. DOI: https://doi.org/ 10.1177/1745691620970604
  16. Xu, F., Gage, N., Zeng, S., Zhang, M., Iun, A., O’Riordan, M., & Kim, E. (2024). The use of digital interventions for children and adolescents with autism spectrum disorder – A meta- analysis. Journal of Autism and Developmental Disorders. 1– 17.  https://doi.org/10.1007/s10803-024-06563-4