The rapid expansion of the Internet of Things (IoT) has resulted in a substantial increase of diverse data from distributed devices. This extensive data stream makes it increasingly important to implement robust and efficient real-time anomaly detection techniques that can promptly alert about issues before they could escalate into critical system failures. Anomaly detection in data is essential in today’s interconnected landscape, as it facilitates the early identification of deviations from established baseline behavior that may indicate system malfunctions, security vulnerabilities, or operational inefficiencies. By promptly identifying these deviations, organizations can reduce downtime, optimize performance, and safeguard critical assets.
This article provides a comprehensive review and comparative analysis of modern methods for detecting anomalies in distributed IoT systems. It examines a wide range of techniques, including traditional statistical approaches, distance-based methods, machine learning models, deep learning architectures, and explainable AI frameworks. Each category is evaluated with respect to detection accuracy, computational efficiency, and interpretability. Real-world examples – ranging from predictive maintenance in industrial IoT and energy management in smart grids to fraud detection in financial networks – demonstrate the broad practical applications of these techniques.
The review further identifies current challenges and promising future research directions, including active learning-based approaches, which offer potential solutions to improve adaptability and reduce the reliance on large labeled datasets. The insights from this review provide a strong foundation for future research aimed at developing hybrid anomaly detection models that integrate advanced techniques to further enhance system adaptability and security in distributed IoT environments.
- Abououf, M., Singh, S., Rabeb Mizouni, & Hadi Otrok. (2023). Explainable AI for Event and Anomaly Detection and Classification in Healthcare Monitoring Systems. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/jiot.2023.3296809
- Abudurexiti, Y., Han, G., Zhang, F., & Liu, L. (2025). An explainable unsupervised anomaly detection framework for Industrial Internet of Things. Computers & Security, 148, 104130. https://doi.org/10.1016/j.cose.2024.104130
- Alrashdi, I., Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., & Ming, H. (2019). AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Learning. IEEE Xplore. https://doi.org/10.1109/CCWC. 2019.8666450
- Aminu, M., Akinsanya, A., Oyedokun, O., Dickson, A., & Dako. (2024). Enhancing cyber threat detection through real‐time threat intel Technology and Research, 13, 11–27. https://doi.org/10.7753/IJCATR1308.1002
- Anusha, R. S., Dadavali, S. P., Akash, D., Vinay, M. G., Tapkire, M., & Manjunath, N. (2024). Efficient learning ‐driven anomaly detection and classification for IoT‐based monitori 20(11), 3749–3758. https://doi.org/10.52783/jes.8237
- Balega, M., Farag, W., Wu, X.-W., Ezekiel, S., & Good, Z. (2024). Enhancing IoT security: Optimizing anomaly detection through machine learning. Electronics, 13(11), 2148. https://doi.org/10.3390/electronics13112148
- Cauteruccio, F., Cinelli, L., Corradini, E., Terracina, G., Ursino, D., Virgili, L., Savaglio, C., Liotta, A., & Fortino,G. (2021). A framework for anomaly detection and classification in Multiple IoT scenarios. Future Generation Computer Systems, 114, 322–335. https://doi.org/10.1016/j.future.2020.08.010
- Chandola, V., Banerjee, A., & Kumar, V. (F). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1– 58. https://doi.org/10.1145/1541880.1541882
- Cook, A. A., Mısırlı, G., & Fan, Z. (2020). Anomaly detection for IoT time-series data: A survey. IEEE Internet of Things Journal, 7(7), 6481–6494. https://doi.org/10.1109/JIOT.2019.2958185
- DeMedeiros, K., Hendawi, A., & Alvarez, M. (2023). A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks. Sensors, 23(3), 1352. https://doi.org/10.3390/s23031352
- Dickson, S. M. (2024). Detection of anomalies in Internet of Things (IoT) devices and sensors. Radinka Journal of Science and Systematic Literature Review, 2(3), 475–481. https://doi.org/10.56778/rjslr.v2i3.347
- Diro, A., Chilamkurti, N., Nguyen, V.-D., & Heyne, W. (2021). A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms. Sensors, 21(24), 8320. https://doi.org/10.3390/ s21248320
- Gad, I. M. (2025). TOCA-IoT: Threshold optimization and causal analysis for IoT network anomaly detection based on explainable random forest. Algorithms, 18, 117. https://doi.org/10.3390/a18020117
- Giannoni, F., Mancini, M., & Marinelli, F. (2018). Anomaly Detection Models for IoT Time Series Data. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1812.00890
- Gummadi, A. N., Napier, J. C., & Abdallah, M. (2023). XAI-IoT: An explainable AI framework for enhancing anomaly detection in IoT systems. IEEE Access. https://doi.org/10.1109/ACCESS.2023.0322000
- Gupta, P., & Tripathy, P. (2024). Unsupervised learning for real-time data anomaly detection: A comprehensive approach. SSRG International Journal of Computer Science and Engineering, 11(10), 1-11. https://doi.org/10.14445/23488387/IJCSE-V11I10P101
- Hu, X., Xu, Q., & Guo, Y. (2020). Trajectory anomaly detection based on the mean distance deviation. Communications in Computer and Information Science, 140–147. https://doi.org/10.1007/978-3-030-63820-7_16
- Idhalama, O., & Oredo, J. (2024). Exploring the next generation Internet of Things (IoT) requirements and applications: A comprehensive overview. Information Development. https://doi.org/10.1177/02666669241267852
- Iturbe, J., & Rifà-Pous, H. (2023). Anomaly-based cyberattacks detection for smart homes: A systematic literature review. Internet of Things, 22, 100792. https://doi.org/10.1016/j.iot.2023.10079
- Jaiswal, A., & Koupaei, A. N. (2024). Deep comparison analysis: Statistical methods and deep learning for network anomaly detection. International Journal of Computer Science and Information Security, 22. https://doi.org/10. 5281/zenodo.14051106
- Jot, J., & Sharma, L. (2023). Study of anomaly detection in IoT sensors. International Journal for Research in Applied Science and Engineering Technology, 11, 767–774. https://doi.org/10.22214/ijraset.2023.55226
- Kalutharage, C. S., Liu, X., Chrysoulas, C., Pitropakis, N., & Papadopoulos, P. (2023). Explainable AI-Based DDOS Attack Identification Method for IoT Networks. Computers, 12(2), 32. https://doi.org/10. 3390/computers12020032
- Kaya, M. O., Ozdem, M., & Das, R. (2025). A novel approach for graph-based real-time anomaly detection from dynamic network data listened by Wireshark: A novel approach for graph-based real-time anomaly detection. EAI Endorsed Transactions on I ndustrial Networks and Intelligent Systems, 12. https://doi.org/10.4108/ eetinis.v12i2.7616
- Krzyszton, E., Rojek, I., & Mikołajewski, D. (2024). A comparative analysis of anomaly detection methods in IoT networks: An experimental study. Applied Sciences, 14, 11545. https://doi.org/10.3390/app142411545
- Lee, C.-Y., & Maceren, E. D. (2025). Physics-informed anomaly and fault detection for wind energy systems using deep CNN and adaptive elite PSO-XGBoost. IET Generation, Transmission & Distribution, 19(1). https://doi.org/10.1049/gtd2.13289
- Liao, N., & Li, X. (2022). Traffic Anomaly Detection Model Using K-Means and Active Learning Method. International Journal of Fuzzy Systems, 24(5), 2264–2282. https://doi.org/10.1007/s40815-022-01269-0
- Martins, I., Resende, J. S., Sousa, P. R., Silva, S., Antunes, L., & Gama, J. (2022). Host-based IDS: A review and open issues of an anomaly detection system in IoT. Future Generation Computer Systems, 133, 95–113. https://doi.org/10.1016/j.future.2022.03.001
- Mutambik, I. (2024). Enhancing IoT security using GA-HDLAD: A hybrid deep learning approach for anomaly detection. Applied Sciences, 14(21), 9848-9848. https://doi.org/10.3390/app14219848
- Nguyen, M.-D., La, V.-H., Mallouli, W., Cavalli, A. R., & Oca, E. M. de. (2023). Toward Anomaly Detection Using Explainable AI. CyberSecurity in a DevOps Environment, 293–324. https://doi.org/10.1007/978-3-031-42212-6_10
- Nguyen, T. D., Marchal, S., Miettinen, M., F ereidooni, H., Asokan, N., & Sadeghi, A.-R. (2019). DÏoT: A Federated Self-learning Anomaly Detection System for IoT. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). https://doi.org/10.1109/icdcs.2019.00080
- Nixon, C., Sedky, M., Champion, J., & Hassan, M. (2024). SALAD: A split active learning based unsupervised network data stream anomaly detection method using autoencoders. Expert Systems with Applications, 248, 123439. https://doi.org/10.1016/j.eswa.2024.123439
- Nizam, H., Zafar, S., Lv, Z., Wang, F., & Hu, X. (2022). Real-Time Deep Anomaly Detection Framework for Multivariate Time-Series Data in Industrial IoT. IEEE Sensors Journal, 1–1. https://doi.org/10.1109/ jsen.2022.3211874
- Odoh, K. (2022). Real-time Anomaly Detection for Multivariate Data Streams. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2209.12398
- Ukil, A., Bandyoapdhyay, S., Puri, C., & Pal, A. (2016). IoT Healthcare Analytics: The Importance of Anomaly Detection. 2016 I EEE 30th International Conference on Advanced Information Networking and Applications (AINA). https://doi.org/10.1109/aina.2016.158
- Sahu, N. K., & Mukherjee, I. (2020). Machine Learning based anomaly detection for IoT Network: (Anomaly detection in IoT Network). IEEE Xplore. https://doi.org/10.1109/ICOEI48184.2020.9142921
- Sakong, W., Kwon, J., Min, K., Wang, S., & Kim, W. (2024). Anomaly Transformer Ensemble Model for Cloud Data Anomaly Detection. IEEE Transactions on Cloud Computing, 12(4), 1305–1313. https://doi.org/10. 1109/TCC.2024.3466174
- Sedjelmaci, H., Senouci, S., & Al-Bahri, M. (2016). A lightweight anomaly detection technique for low-resource IoT devices: A game-theoretic methodology. HAL (Le Centre Pour La Communication Scientifique Directe). https://doi.org/10.1109/icc.2016.7510811
- Stradiotti, L., Perini, L., & Davis, J. (2024). Combining active learning and learning to reject for anomaly detection. In Frontiers in Artificial Intelligence and Applications. https://doi.org/10.3233/FAIA240749
- Škvára, V., Smidl, V., & Pevný, T. (2024). Anomaly detection in multifactor data. Neural Computing and Applications, 36(34), 21561–21580. https://doi.org/10.1007/s00521-024-10291-2
- Tyagi, H., & Kumar, R. (2021). Attack and Anomaly Detection in IoT Networks Using Supervised Machine Learning Approaches. Revue d’Intelligence Artificielle, 35(1), 11–21. https://doi.org/10.18280/ria.350102
- Vajda, D. L., Do, T. V., Bérczes, T., & Farkas, K. (2024). Machine learning-based real-time anomaly detection using data pre-processing in the telemetry of server farms. Scientific Reports, 14(1). https://doi.org/10. 1038/s41598-024-72982-z
- Wang, C., & Zhu, H. (2024). Enhancing data for hard anomaly detection. In Universal Behavior Computing for Security and Safety, 2, 45–56. https://doi.org/10.1007/978-981-97-9014-2_2
- Yang, K., Ren, J., Zhu, Y., & Zhang, W. (2018). Active Learning for Wireless IoT Intrusion Detection. IEEE Wireless Communications, 25(6), 19–25. https://doi.org/10.1109/mwc.2017.1800079
- Zeng, F., Wang, M., Pan, Y., Lv, S., Huiyu, M., Han, H., & Yuan, X. (2025). Distributed data privacy protection via collaborative anomaly detection. Electronics, 14(2), 295. https://doi.org/10.3390/electronics14020295
- Zakariah, M., & Almazyad, A. S. (2023). Anomaly detection for IoT systems using active learning. Applied Sciences, 13(21), 12029. https://doi.org/10.3390/app132112029