Predicting the Duration of Treatment Using Personalized Medical Data

2024;
: pp. 146 - 150
Authors:
1
Lviv Politechnik National University

The article describes the problem of data personalization by identifying the individual characteristics necessary to solve the personalization problem. The essence of the researched problem of personalization and the solution of tasks of the estimated correlation between individual characteristics and the solution using the forecasting model has been also highlighted. This study focuses on solving the problem of formalization of the studied object and the formalization of its conditions during treatment or rehabilitation, which will optimize the processes of treatment, analysis of individual patient characteristics, and forecasting possible personalized solutions for health care, focusing on patient health.

  1. Tresa, E., Czabanowska, K., Clemens, T., Brand, H., Babich, S. M., Bjegovic-Mikanovic, V., & Burazeri, G. (2022). Europeanization of health policy in post- communist European societies: Comparison of six Western Balkan countries. Health policy (Amsterdam, Netherlands), 126(8), 816–823. DOI: https://doi.org/ 10.1016/j.healthpol.2022.05.01.
  2. Malek N. P. (2017). Personalisierung in der Medizin der Zukunft: Chancen und Risiken [Personalization in the medicine of the future : Opportunities and  risks]. Der Internist, 58(7), 650–656. DOI: https://doi.org/ 10.1007/s00108-017-0265-5.
  3. Djulbegovic, B., & Guyatt, G. H. (2017). Progress in evidence-based medicine: a quarter century on. The Lancet, 390(10092), 415-423. DOI: https://doi.org/ 10.1016/s0140-6736(16)31592-6.
  4. Danhof, M., Klein, K., Stolk, P., Aitken, M., & Leufkens, H. (2018). The future of drug development: the paradigm shift towards systems therapeutics. Drug discovery today, 23(12), 1990-1995. DOI: https://doi.org/10.1016/ j.drudis.2018.09.002.
  5. Marcelino, C. G., Leite, G. M. C., Celes, P., & Pedreira, C. E. (2022). Missing Data Analysis in Regression. Applied Artificial Intelligence, 36(1). DOI: https://doi.org/ 10.1080/08839514.2022.2032925.
  6. Mishyna, M., Volokh, O., Danilova, Y., Gerasimova, N., Pechnikova, E., & Sokolova, O. S. (2017). Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Micron (Oxford, England: 1993), 96, 57–64. DOI: https://doi.org/10.1016/j.micron.2017.02.004.
  7. Khanmohammadi S. (2017). An improved synchronization likelihood method for quantifying neuronal synchrony. Computers in biology and medicine, 91, 80–95. DOI: https://doi.org/10.1016/j.compbiomed.2017.09.022.
  8. Perov, Y.N., Graham, L., Gourgoulias, K., Richens, J.G., Lee, C.M., Baker, A., & Johri, S. (2019). MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming. Symposium on Advances in Approximate        Bayesian Inference.                DOI: https://doi.org/10.48550/arXiv.1910.08091.
  9. Tang, Y., Wang, J., Nguyen, M., & Altintas, I. (2019). PEnBayes: A Multi-Layered Ensemble Approach for Learning Bayesian Network Structure from Big Data. Sensors (Basel, Switzerland), 19(20), 4400. DOI: https://doi.org/10.3390/s19204400.
  10. Lakho, Shamshad & Jalbani, Dr & Vighio, Muhammad & Memon, Imran & Siraj, Saima & Soomro, Qamar Un Nisa. (2017). Decision Support System for Hepatitis Disease Diagnosis using Bayesian Network. Sukkur IBA Journal of Computing and Mathematical Sciences. DOI: https://doi.org/https://doi.org/10.30537/sjcms.v1i2.51.
  11. Kallen, V., Tahir, M., Bedard, A., Bongers, B., van Riel, N., & van Meeteren, N. (2021). Aging and Allostasis: Using Bayesian Network Analytics to Explore and Evaluate Allostatic Markers in the Context of Aging. Diagnostics (Basel, Switzerland), 11(2), 157. DOI: https://doi.org/10.3390/diagnostics11020157.
  12. Perova, Iryna & Bodyanskiy, Yevgeniy. (2017). Fast medical diagnostics using autoassociative neuro-fuzzy memory. International Journal of Computing, 16, 34-40. DOI: https://doi.org/10.47839/ijc.16.1.869.
  13. Anand, Neeyati & Sehgal, Riya & Anand, Sanchit & Kaushik, Ajay. (2021). Feature selection on educational data using Boruta algorithm. International Journal of Computational Intelligence Studies. 10(1), 27-35. DOI: https://doi.org/10.2478/logi-2024-0008.
  14. Wang, M., Abrams, Z. B., Kornblau, S. M., & Coombes, K. R. (2018). Thresher: determining the number of clus- ters while removing outliers. BMC bioinformatics, 19(1), 9. DOI: https://doi.org/10.1186/s12859-017-1998-9.
  15. Melnykova, Nataliia & Shakhovska, Natalya & Greguš, Michal & Melnykov, Volodymyr. (2019). Using Big Data for Formalization the Patient’s Personalized Data. Procedia Computer Science, 155, 624-629. DOI: https://doi.org/10.1016/j.procs.2019.08.088.
  16. Shakhovska, N., Izonin, I., & Melnykova, N. (2021). The Hierarchical Classifier for COVID-19 Resistance Evaluation. Data, 6, 6. DOI: https://doi.org/10.3390/data6010006.
  17. Izonin, I., Tkachenko, R., Dronyuk, I., Tkachenko, P., Gregus, M., & Rashkevych, M. (2021). Predictive modeling based on small data in clinical medicine: RBF- based additive input-doubling method. Mathematical biosciences and engineering: MBE, 18(3), 2599–2613. DOI: https://doi.org/10.3934/mbe.2021132.