Comparative analysis of algorithms for projected laser line identification and recognition for 3d scanning devices

: pp. 84 – 90
Andrushchak N., Vasylyshyn В., Chornenkyy V.

Computer-Aided Design Systems Lviv Polytechnic National University

This paper is devoted to the comparative analysis of algorithms for identification and recognition of the projected laser line. The principles of these methods, their negative and positive aspects and the possibilities of their implementation for 3D-scanning devices are described. Algorithms approbation was conducted on experimental setup using C++ programming language and OpenCV library. It is shown that, depending on the image size and details of the input image, one or another algorithm should be applied

1. Gonzalez R. C. Digital Image Processing / Gonzalez R. C. & Woods R. E. – New York: Addison Wesley, 1992. 2. Sonka M. Image Processing Analysis and Machine Vision / Sonka M., Hlavac V., Boyle R. – Ch. 6. – Second ed. International Thomson Computer Press, 1999. 3. Vernon D. Machine Vision / D. Vernon. – Ch. 5 – Prentice-Hall, 1991. 4. Vosselman G. Airborne and Terrestrial Laser Scanning / Vosselman G., Maas H-G. – Dunbeath: Whittles Publ., 2010. 5. Franca J. A 3d scanning system based on laser triangulation and variable field of view / Franca J., Gazziro M., Ide A., Saito J. // IEEE International Conference on Image Processing, ICIP 2005. – Vol. 1, P. 425–428. 6. Cao F. Extracting meaningful curves from images / Cao F., Musé P., Sur F. // J. Math. Imaging Vis. 22(2), 2005. – P. 159–181. 7. Lee Y.-S. A straight line detection using principal component analysis / Lee Y.-S., Koo H.-S. and Jeong C.-S. // Pattern Recognition Letters 27(14), 2006. 8. Neter J. Applied Linear Statistical Models / Neter J., Kutner M. H., Nachtsheim C. J. and Wasserman W. – 4th Ed. – Boston: McGraw Hill, 1996. 9. Casella G. Statistical Inference // G. Casella and R. Berger. – 2nd edition. – Pacific Grove:Duxbury Advanced Series, 2002. 10. Moore D. Introduction to the Practice of Statistics / D. Moore and G. McCabe // W. H. Freeman and Co. – London, 2003. 11. Bradski G. Learning OpenCV: Computer Vision with the OpenCV Library / Bradski G., Kaehler A. – Cambridge: O’Reilly, 2008. 12. Canny J. F. A computational approach to edge detection / Canny J. F. // IEEE Trans. Pattern Anal. Mach. Intell. – 1986. – 8 (6). – P. 679–698.