ENERGY RECUPERATION IN ELECTRIC VEHICLES: PROCESS OPTIMIZATION AND IMPACT ON RANGE

2025;
: 205-212
https://doi.org/10.23939/cds2025.01.205
Received: March 05, 2025
Revised: March 12, 2025
Accepted: March 19, 2025
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

Energy recuperation is crucial to optimizing electric vehicles' efficiency and driving range (EVs). This study models and analyzes the recuperation process under real-world driving conditions, considering key factors such as driving style, road slopes, and traffic conditions. A comparative simulation was conducted using two approaches: one incorporating driving styles and traffic light influences and another assuming uniform energy consumption. The results indicate that accounting for driving styles leads to a more accurate energy consumption prediction, with variations of up to 15% depending on driving behavior. Aggressive driving significantly reduces recuperation efficiency, whereas an economical driving style maximizes energy recovery. The study highlights the importance of including these real-world factors in EV range estimation models to improve energy management strategies

[1] Рекуперативне гальмування в електромобілях: що це, принцип роботи URL: https://toka.energy/uk/blog/rekuperativne-galmuvannya/ 

[2] Рекуперативне гальмування в електромобілях – простими словами. ECOFACTOR. URL: https://ecofactortech.com/ua/recuperacia/ 

[3] Дослідження ролі рекуперативного гальмування в зарядці електромобіля | EVCOME. EV Charging Station Manufacturers & Suppliers | EVCOME. URL: https://www.evcomecharger.com/uk/a-news-exploring-the-role-of-regenerative-braking-in-electric-vehicle-charging 

[4] ХНАДУ: Харківський національний автомобільно-дорожній університет. URL: https://www.khadi.kharkov.ua/fileadmin/P_vcheniy_secretar/АВТОМ_ТРАНСП/Авт_та_тракт_2020/new_r/R_ekyperatsiya.pdf

[5]  Kim D., Eo J. S., Kim K.-K. K. Parameterized Energy-Optimal Regenerative Braking Strategy for Connected and Autonomous Electrified Vehicles: A Real-Time Dynamic Programming Approach. IEEE Access. 2021. Vol. 9. P. 103167–103183. URL: https://doi.org/10.1109/access.2021.3098807 

[6] Energy-optimal Design and Control of Electric Powertrains under Motor Thermal Constraints. arXiv.org. URL: https://doi.org/10.48550/arXiv.2111.07711 

[7] Khodaparastan, M., Mohamed, A. A., & Brandauer, W. (2018). Regenerative braking energy recovery in electric railway transit systems: Opportunities and challenges. arXiv preprint. https://arxiv.org/abs/1808.05938

[8] Ehsani, M., Gao, Y., & Miller, J. M. (2003). Energy Management Strategies for Electric Vehicles with Regenerative Braking: A Review. IEEE Transactions on Vehicular Technology, 52(5), 1306-1314. https://doi.org/10.1109/TVT.2003.816623

[9] Khaligh, A., & Li, Z. (2010). Regenerative Braking System for Electric Vehicles Using Ultracapacitors to Maximize Energy Recovery. IEEE Transactions on Vehicular Technology, 59(6), 2806-2814. https://doi.org/10.1109/TVT.2010.2049405

[10]  Chan, C. C., & Chau, K. T. (1997). Impact of Regenerative Braking on Energy Consumption of an Electric Vehicle in Urban Driving. IEEE Transactions on Energy Conversion, 12(3), 346-353. https://doi.org/10.1109/60.623968