: 27-37
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

The issue of drinking water is one of the most important nowadays for most countries, especially for densely populated and developing countries. The main reasons for such situation are population growth; drought; extraction of minerals, in particular oil; the widespread use of chemicals in the farm, etc., which are today that critical "pressure" on nature that prevents it from fully performing water purification from contamination. Therefore, minimizing the negative impact on nature and improving the technology of water purification are the main directions of solving such a global issue.Well-known physical, chemical and physicochemical methods do not always provide new levels of purification, which are required by norms, without the use of additional expensive chemicals for coagulation, deposition, etc.It increases operational costs and produces more volumes of hazardous waste.In addition, international standards require more efficient separation systems than those that are used in full. Nanotechnologies can significantly affect the area of sewage treatment in the near future. Nanotechnologies are aimed at improving existing methods by increasing the efficiency of processes and increasing the reuse of nanomaterials.Nanomaterials are endowed with unique properties such as a large surface-to-volume ratio, high reactivity and sensitivity, self-sampling properties on film substrates, high adsorption, and others.Due to these properties, nanomaterials are effective against various organic and inorganic pollutants, heavy metals, as well as against various harmful microorganisms present in contaminated water.

The article deals with the latest achievements and applications of nanotechnologies for wastewater treatment.The use of various nanomaterials such as nanoparticles of metals, metal oxides, carbon compounds, zeolites, filtration membranes, etc., in nanofiltration, adsorption, separation of organic and inorganic substances and photocatalytic degradation of organic pollutants, including theoretical foundations and mechanisms, have been discussed.

1. Abu-Dief A. M., Hamdan S. K. Functionalization of magnetic nano particles: synthesis, characterization and their application in water purification // American Journal of Nanosciences. – 2016. – Vol. 2, No 3. – P. 26–40.

2. Baruah S.,Khan M. N., Dutta J. Perspectives and applications of nanotechnology in water treatment // Environmental Chemistry Letters. – 2015. – Vol. 14. – P. 1–14.
3. Shams Ashaghi K., Ebrahimi M., Czermak P. Ceramic ultra- and nanofiltration membranes for oilfield produced water treatment: a mini review // The Open Environmental Journal. – 2007. – Vol. 1. – P. 1–8.
4. Bora T., Dutta J. Applications of nanotechnology in wastewater treatment – a review // Journal of Nanoscience and Nanotechnology. – 2014. – Vol. 14. – P. 613–626.

5. Membranes and nanotechnologies / V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, S. S. Ivanchev and A. B. Yaroslavtsev // Nanotechnologies in Russia. – 2008. – Vol. 3. – P. 656–687.

6. Nanofiltration for water and wastewater treatment – a mini review /H. K. Shon, S. Phuntsho, D. S. Chaudhary, S. Vigneswaran, J. Cho // Drinking Water Engineering and Science. – 2013. – Vol. 6. – P. 47–53.

7. Potential of advanced nano-structured membranes for landfill leachate treatment: a review / Z. Dabaghian, M. Peyravi, M. Jahanshahi, A. S. Rad // ChemBioEng Reviews. – 2018. – Vol. 5, No. 2. – P. 1–20.

8. Highly hydrophilic electrospunpolyacrylonitrile/ 37 polyvinypyrro-lidonenanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment / A. R. Alharbi, I. M. Alarifi, W. S. Khan, R. Asmatulu // Journal of Membrane and Separation Technology. – 2016. – Vol. 5, No 2. – P. 38–56.

9. Dairy wastewater treatment using integrated membrane systems / A. C. Bortoluzzi, J. A. Faitão, M. Di Luccio, R. M. Dallago, J. Steffens, G. L. Zabot, M. V. Tres // Journal of Environmental Chemical Engineering. – 2017. – Vol. 5. – P. 4819–4827.
10. Physicochemical characterization of tight nanofiltration membranes fordairy wastewater treatment / Z. Chen, J. Luo, X. Hang, Y. Wan // Journal of Membrane Science. – 2018. – Vol. 547. – P. 51–63.
11. Membrane bioreactor and promising application for textile industry in Vietnam / T. V. Luong, S. Schmidt, S. A. Deowan, J. Hoinkis, A. Figoli, F. Galiano // 13th Global Conference on Sustainable Manufacturing. Procedia CIRP. – 2014. – P. 1–6.

12. Sharma V., Sharma A. Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes // International Journal of Enhanced Research in Science Technology & Engineering. – 2012. – Vol. 1, No 2. – P. 1–8.
13. Design and function of biomimetic multilayer water purification membranes / S. Ling, Z. Qin, W. Huang, S. Cao, D. L. Kaplan, M. J. Buehler // Scies Advances. – 2017. – Vol. 3. – P. 1–11.

14. Clay mixtures and the mechanical properties of microporous and nanoporous ceramic water filters / E. Annan, K. Kan-Dapaah, S. T. Azeko, K. Mustapha, J. Asare, M. G. Zebaze Kana, W. Soboyejo // Journal of Materials in Civil Engineering. – 2016. – Vol. 28, No 10. – P. 04016105(1-11).

15. Tight ultrafiltration  ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment / X. Ma, P. Chen, M. Zhou, Z. Zhong, F. Zhang, W. Xing // Industrial & Engineering Chemistry Research. – 2017. – Vol. 56. – P. 7070−7079.

16. Synthesis of titania–γ-alumina multilayer nanomembranes on performance-improved alumina supports for wastewater treatment / M. Shayesteh, A. Samimi, M. S. Afarani, M. Khorram // Desalination and Water Treatment. – 2015. – Vol. 57. – P. 1–8.
17. Ungur G., Hruza J. Modified polyurethane nanofibers as antibacterial filters for air and water purification // RSC Advances. – 2017. – Vol. 7. – P. 49177–49187.

18. Printing ultrathin graphene oxide nanofiltration membranes for water purification / M. Fathizadeh, H. N. Tien, K. Khivantsev, J.-T. Chen, M. Yu. // Journal of Materials Chemistry A. – 2017. – Vol. 5, No 39. – P. 20860–20866.
19. Nanocomposite membranesfor water purification/ S. Hernández, M. Gui, D. Davenport, L. Ormsbee, D. Bhattacharyya // Conference: Kentucky Water Resources Annual Symposium At: Lexington, KY. – 2015.
20. Kuntyi O. I. Electrochemistry and Morphology of Disperse Metals (ukr.). – Lviv: Publ. House Lviv Polytechnic National University, 2008. – 208 p.

21. Yavorskyi V. T., Znak Z. O., Mnykh R. V. Influence of cavitation treatment on the physicochemical properties of calcium hydroxide // Materials Science. – 2013. – Vol. 49, No 3. – P. 368–374.

22. Nosratinia F., Ghahremani H., Shirazian S. Preparation and characterization of nanoporous ceramic membranes for separation of water from ethanol // Desalination and Water Treatment. – 2014. – Vol. 54. – P. 1–6.

23. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions / K. Wang, W. Yiming, J. Saththasivam, Z. Liu // Nanoscale. – 2017. – No 26. – P. 1–22.
24. Amphi-functional mesoporous silica nanoparticles for dye separation/ P. Shinde, S. S. Gupta, B. Singh, V. Polshettiwar, B. L. V. Prasad. // Journal of Materials Chemistry A. – 2017. – No 28. – P. 14914–14921.
25. Functionalizedmesoporoussilica: absorbentsforwaterpurification/ S. Nasreen, A. Urooj, U. Rafique, S. Ehrman// Desalination and water treatment. – 2016. – Vol. 57. – P. 1–11.

26. Phosphoryl functionalized mesoporous silica for uranium adsorption / X. Guo, Y. Feng, L. Ma, D. Gao, J. Jing, J. Yu, H. Sun, H. Gong, Y. Zhang // Applied Surface Science. – 2017. – Vol. 402. – P. 53–60.

27. Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption /  J. Ma, Y. Sun, M. Zhang, M. Yang, X. Gong, F. Yu, J. Zheng // Environmental Science & Technology. – 2017. – Vol. 51, No 21. – P. 12283–12292.

28. Nyongesa F., Aduda B. Electrophoretic deposition of titanium dioxide thin films for photocatalytic water purification systems // Advances in Materials. – 2017. – Vol. 6, No 4. – P. 31–37.

29. Porous ceramics based on hybrid inorganic tetrapodal networks for efficient photocatalysis and water purification / J. Gröttrup, F. Schütt, D. Smazna, O. Lupan, R. Adelung, Y. K. Mishra // Ceramics International. – 2017. – Vol. 43. – P. 14915–14922.

30. Habba Y. G., Capochichi-Gnambodoe M., Leprince-Wang Y. Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification // Applied Sciences. – 2017. – Vol. 7. – P. 1185 (1–10).