The method of the composite hydrogel membranes synthesis based on the 2-hydroxyethyl methacrylate (HEMA) and polyvinylpyrrolidone (PVP) with simultaneous modification in the volume by the mixture of polyamide-6 (PA-6) and PVP solution with varying the concentration of the reaction mixture in the water has been described in this study. The influence of the water content in the reaction composition on the physical mechanical properties and water absorption of the obtained membranes has been investigated. o
1. Konovalova, V. V., Samchenko, Yu. M., Chyketa, O. O., Androniuk, Yu. O., Pobihai, H. A., Komarskyi, S. A., Burban, A. F. (2012). Kompozytsiini membrany na osnovi polimernykh hidroheliv ta ultrafiltratsiinykh membran iz funktsiieiu rN - i termochutlyvosti. Naukovi zapysky NaUKMA, 131, 12-18.
2. Langer, R., Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J., 49(12), 2990-3006. https://doi.org/10.1002/ aic.690491202
https://doi.org/10.1002/aic.690491202
3. Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc. Chem. Res., 33(2), 94-101. doi: 10.1021/ar9800993
https://doi.org/10.1021/ar9800993
4. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials, 1(11), 1345-1360. doi: 10.1002/adma.200501612
https://doi.org/10.1002/adma.200501612
5. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21 (2-33), 3307-3329. doi: 10.1002/adma.200802106
https://doi.org/10.1002/adma.200802106
6. Lu, S., Anseth, K. S. (1999). Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Controlled Release, 57, 291-300. https://doi.org/ 10.1016/S0168-3659(98)00125-4
https://doi.org/10.1016/S0168-3659(98)00125-4
7. Tang, Q., Yu, J.-R., Chen, L., Zhu, J., Hu, Z.-M. (2010). Preparation and properties of morphology controlled poly(2-hydroxyethyl methacrylate)/poly(N-vinyl pyrrolidone) double networks for biomedical use. Curr. Appl. Phys., 10, 766-770. doi:10.1016/j.cap. 2009.09.012.
https://doi.org/10.1016/j.cap.2009.09.012
8. Yanez, F., Concheiro, A., Alvarez-Lorenzo, C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP-pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094-1103. doi:10.1016/j.ejpb.2008.01.023.
https://doi.org/10.1016/j.ejpb.2008.01.023
9. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., Berezhnyy, B. (2020). Formation features of tubular products on the basis of composite hydrogels. Chem. Chem. Technol., 14, 312-317.
https://doi.org/10.23939/chcht14.03.312
10. Jovašević, J., Dimitrijević, S., Filipović, J., Tomić, S., Mićić, M., Suljovrujić E. (2011). Swelling, mechanical and antimicrobial studies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Phys. Pol., 120, 279-283. doi: 10.12693/APhysPolA.120.279.
https://doi.org/10.12693/APhysPolA.120.279
11. Ciardelli, G., Cristallini, C., Barbani, N., Benedetti, G., Crociani, A., Travison, L., Giusti, P. (2002). Bioartificial polymeric materials: -amylase, poly(2-hydroxyethyl methacrylate), poly(N-vinylpyrrolidone) system. Macromol. Chem. Phys., 203 (1666-1673). doi:10.1002/1521-3935(200207)203:10/11<1666::aid-macp1666>3.0.co;2-d.
https://doi.org/10.1002/1521-3935(200207)203:10/11<1666::AID-MACP1666>3.0.CO;2-D
12. Frutos, P., Diez-Peña, E., Frutos, G., Barrales-Rienda, J. (2002). Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(N-vinyl-2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials., 23, 3787-3797. doi:10.1016/s0142-9612(02)00028-5.
https://doi.org/10.1016/S0142-9612(02)00028-5
13. Domingues, J., Bonelli, N., Giorgi, R., Baglioni, P. (2013). Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Appl. Phys. A., 114, 705-710. doi:10.1007/s00339-013-8150-0.
https://doi.org/10.1007/s00339-013-8150-0
14. Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., Aksimentyeva, O., Horbenko, Y., Kotsarenko M. (2019). Electrical elements of the optical systems based on hydrogel-electrochromic polymer composites. Mol. Cryst. Liq. Cryst., 672, 150-158. doi: 10.1080/15421406.2018.1550546.
https://doi.org/10.1080/15421406.2018.1550546
15. Lavrov, N. A. (2018). Himicheskaya modifikatsiya i svoystva polimerov 2-gidroksietilmet-akrilata. Plast. massyi, (7-8), 3-10. https://doi.org/10.35164/0554-2901-2018-7-8-3-10.
https://doi.org/10.35164/0554-2901-2019-9-10-3-7
16. Malyugin, B. E., Borzenok, S. A., Mushkova, I. A., Ostrovskiy, D. S., Popov, I. A., Shkandina, Yu. V. (2017). Issledovanie biosovmestimosti materialov dlya vnutrirogovichnyih linz na modeli kulturyi kletok stromyi rogovitsyi cheloveka. Vestnik transplantologii i iskusstvennyih organov, 19(1), 74-81. https://doi.org/10.15825/1995-1191-2017-1-74-81.
https://doi.org/10.15825/1995-1191-2017-1-74-81
17. Semeniuk, N. B., Kohut, O. O., Chernyhevych, I. D., Neboha, H. B., Skorokhoda, V. Y. (2015). Osoblyvosti oderzhannia sferychnykh hidroheliv dlia system kontrolovanoho vyvilnennia likiv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, (812), 404-408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71.
18. Suberliak, O. V., Hrytsenko, O. M., Koval, Yu. B., Voloshkevych, P. P. (2014). Metalonapovneni hidrohelevi plivky. Zakonomirnosti tekhnolohii oderzhannia vidtsentrovym formuvanniam. Khimichna promyslovist Ukrainy, 5(124), 33-39. https://sci.ldubgd.edu.ua/bitstream/123456789/2097/ 1/4.pdf
19. Habiboallah, G., Nasroallah, S. & Mahdi, Z. (2008). Histological evaluation of Curcuma ongaghee formulation and hyaluronic acid on gingival healing in dog. Journal of Ethnopharmacology, 120(3), 335-341. doi: 10.1016/j.jep.2008.09.011
https://doi.org/10.1016/j.jep.2008.09.011
20. Kim, G. H, Kang, Y. M. & Kang, K. N. (2011). Wound Dressings for Wound Healing and Drug Deliver. Tissue Engineering and Regenerative Medicine, 8(1), 1-7.
21. Teodorescu, M., Bercea, M. Poly(vinylpyrrolidone) - a versatile polymer for biomedical and beyond medical applications. Polym. Plast. Technol. Eng. 2015, 54, 923-943. https://doi.org/10.1080/03602559.2014.979506.
https://doi.org/10.1080/03602559.2014.979506
22. Suberlyak, O.; Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK; 136-214. doi:10.5772/intechopen.72082.
https://doi.org/10.5772/intechopen.72082
23. Roy, N.; Saha, N. (2012). PVP-based hydrogels: synthesis, properties and applications. In Hydrogels: Synthesis, Characterization and Applications; Câmara, F., Ferreira, L., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 227-252.
24. Avramenko, V. L., Pidhorna, L. P., Cherkashchyna, H. M., Blyzniuk, O. V. (2018). Tekhnolohiia vyrobnytstva ta pererobky polimeriv medyko-biolohichnoho pryznachennia: navch. posib. Kharkiv. Tekhnolohichnyi Tsentr, 356.
25. Baran, N. M., Melnyk, Yu. Ya., Suberliak, S. A., Yatsulchak, H. V., Zemke, V. M. (2018). Formuvannia kompozytsiinykh plivkovykh hidrohelevykh membran. Chemistry, technology and application of substances, 1(2), 132-135. http://nbuv.gov.ua/UJRN/chtaps_2018_1_2_23
https://doi.org/10.23939/ctas2018.02.132
26. Suberlyak, O. V., Baran, N. M., Melnyk, Y. Y., Grytsenko, O. M., Yatsulchak, H. V. (2020). Influence of the molecular weight of polyvinylpyrrolidone on the physicomechanical properties of composite polyamide hydrogel membranes. Materials Science, Vol. 55, iss. 5, 758-764. doi: 10.1007/s11003-020-00368-3
https://doi.org/10.1007/s11003-020-00368-3
27. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121-126. http://nbuv.gov.ua/UJRN/ Vchem_2018_3_19
28. Hrytsenko, O. M., Skorokhoda, V. Y., Yadushynskyi, R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". (488), 300-303.
29. Hrytsenko, O. M., Skorokhoda, V. I., Shapo- val, P. I., Bukhvak, I.V. (2000). Doslidzhennia pryshcheplenoi polimeryzatsii na PVP, initsiiovanoi soliamy metaliv zminnoi valentnosti. Visnyk DU "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia. (414), 82-85.
30. Suberlyak, O. V., Mel'nyk, Yu. Ya., Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50, 889-896.
https://doi.org/10.1007/s11003-015-9798-8