Obtaining of nanocomposites based on montmorillonite and polyamide in solution

: 172-178
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

The method of obtaining nanocomposites based on polyamide-6 and montmorillonite intercalated by polyvinylpyrrolidone by precipitation from a solution in formic acid was developed in the work. The structure and physical interaction between the components of nanocomposites were studied by the methods of XRD, IR spectroscopic, and microscopic analyzes. The presence of polyvinylpyrrolidone in the structure of nanocomposites obtained from the solution was confirmed by IR spectroscopic analysis. Using SEM images, it was established that exfoliated montmorillonite particles with sizes from 100 to 200 nm are present in the structure of nanocomposites.

1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185-1189. doi: 10.1557/ jmr.1993.1185
2. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1179-1184. doi: 10.1557/jmr.1993.1179
3. Sinha, S., Song, T., Wan, X., & Tong, Y. (2009). Scratch and normal hardness characteristics of polyamide 6/nano-clay composite. Wear, 266(7-8), 814-821. doi: 10.1016/j.wear.2008.12.010
4. Wang, C., Li, Y., Hu, G., & Cao, D. (2015). Synergistic flame retardant effects of composites containing organic montmorillonite, Nylon 6 and 2-cyclic pentaerythritoloctahydrogen tetraphosphate-4,6-benzene sulfonic acid sodium ammion-triazine. New Carbon Materials, 30(2), 186-192. doi: 10.1016/s1872-5805(15)60184-6
5. Chen, J., Beake, B., Bell, G., Tait, Y., & Gao, F. (2016). Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures. Journal of Experimental Nanoscience, 11(9), 695-706. doi: 10.1080/17458080.2015.1136847
6. Dasari, A., Yu, Z., Mai, Y., & Kim, J. (2008). Orientation and the extent of exfoliation of clay on scratch damage in polyamide 6 nanocomposites. Nanotechnology, 19(5), 055708. doi: 10.1088/0957-4484/19/05/055708
7. Bazmara, M., Silani, M., & Dayyani, I. (2021). Effect of functionally-graded interphase on the elasto-plastic behavior of nylon-6/clay nanocomposites; a numerical study. Defence Technology, 17(1), 177-184. doi: 10.1016/j.dt.2020.03.003
8. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15-16), 2587-2595. doi: 10.1016/j.compscitech.2009.07.016
9. Fornes, T., Hunter, D., & Paul, D. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321-2331. doi: 10.1016/ j.polymer.2004.01.061
10. Kiliaris, P., Papaspyrides, C., & Pfaendner, R. (2009). Influence of accelerated aging on clay-reinforced polyamide 6. Polymer Degradation and Stability, 94(3), 389-396. doi: 10.1016/j.polymdegradstab.2008.11.016
11. Araujo, E., Leite, A., Paz, R., Medeiros, V., Melo, T., & Lira, H. (2011). Polyamide 6 Nanocomposites with Inorganic Particles Modified with Three Quaternary Ammonium Salts. Materials, 4(11), 1956-1966. doi: 10.3390/ ma4111956
12. McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242-2251. doi: 10.1002/app.25599
13. Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83-89. doi: 10.1016/j.compositesb.2011.04.035
14. Gnatowski, A., Suberlak, O., Postawa, P. (2006). Functional materials based on PA6/PVP blends. Journal of Achievements in Materials and Manufacturing Engineering, 18, 91-94.
15. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44-50. doi: 10.15587/1729-4061.2017.108465
16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3-10. doi: 10.4028/www.scientific.net/kem.756.3
17. Krasinskyi, V., Gajdos, I., Suberlyak, O., Antoniuk, V., & Jachowicz, T. (2019). Study of the structure and thermal characteristics of nanocomposites based on polyvinyl alcohol and intercalated montmorillonite. Journal of Thermoplastic Composite Materials, 089270571987919. doi: 10.1177/0892705719879199
18. Baganizi, D., Nyairo, E., Duncan, S., Singh, S., Dennis, V. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. (2017). Nanomaterials, 7(7), 165. doi: 10.3390/nano7070165