PECULIARITIES OF METALLIZATION OF POLYVINYL CHLORIDE GRANULES

2021;
: 173-178
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The results of experimental studies of copper plating of polyvinyl chloride granules in a chemical precipitation solution are presented. The influence of the surface area of polyvinyl chloride granules on the kinetic regularities of copper reduction and the copper content on metallized granules has been studied. It is established that the surface area of polyvinyl chloride granules has a significant effect on the rate of reduction of copper ions and does not affect the amount of reduced copper. The thickness of the layer of the obtained copper shell on polyvinyl chloride granules of different sizes depending on the metal content is calculated.

1. Wang L., Qiu H., Liang C. B., Song P., Han Y. X., Han Y. X., …Guo Z. H. (2019). Electromagnetic interference shielding MWCNT-Fe3O4Ag/ epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 141, 506-514. doi.org/10.1016/j.carbon.2018.10.003
https://doi.org/10.1016/j.carbon.2018.10.003
2. Liu C., Wang L., Liu S., Tong L., Liu X. (2020). Fabrication strategies of polymer-based electromagnetic interference shielding materials. Advanced Industrial and Engineering Polymer Research, 3(4), 149-159. doi:10.1016/j.aiepr.2020.10.002 
https://doi.org/10.1016/j.aiepr.2020.10.002
3. Burk L., Gliem M., Lais F., Nutz F., Retsch M., Mülhaupt R. (2018). Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity. Polymers, 10(10), 1088. https://doi.org/10.3390/polym10101088
https://doi.org/10.3390/polym10101088
4. You J., Kim J.-H., Seo K. H., Huh W., Park J. H., Lee S. S. (2018). Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite. J. Ind. Eng. Chem., 66, 356-361. doi.org/10.1016/j.jiec.2018.06.001
https://doi.org/10.1016/j.jiec.2018.06.001
5. You J., Choi H. H., Cho J., Son J. G., Park M., Lee S. S., Park J. H. (2018). Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment. Composites Science and Technology, 160, 245-254. https://doi.org/10.1016/j.compscitech.2018.03.021
https://doi.org/10.1016/j.compscitech.2018.03.021
6. Ren L., Zeng X., Sun R., Xu J. B., Wong C. P. (2019). Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J., 370, 166-175. doi.org/10.1016/j.cej.2019.03.217
https://doi.org/10.1016/j.cej.2019.03.217
7. Sohn Y., Han T., Han J. H. (2019). Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coeffcient of thermal expansion of graphite/copper composites. Carbon, 149, 152-164. doi.org/10.1016/j.carbon.2019.04.055
https://doi.org/10.1016/j.carbon.2019.04.055
8. Moradi S., Calventus Y., Román F., Hutchinson J. M. (2019). Achieving High Thermal Conductivity in Epoxy Composites: Effect of Boron Nitride Particle Size and Matrix-Filler Interface. Polymers, 11, 1156. https://doi.org/10.3390/polym11071156
https://doi.org/10.3390/polym11071156
9. Zhou W., Zuo J., Ren W. (2012). Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A Appl. Sci. Manuf., 43(4), 658-664. doi.org/10.1016/j.compositesa.2011.11.024
https://doi.org/10.1016/j.compositesa.2011.11.024
10. Grytsenko O., Gajdoš I., Spišák E., Krasinskyi V., Suberlyak O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956. https://doi.org/10.3390/ma12121956
https://doi.org/10.3390/ma12121956
11. Navarro L., Barreneche C., Castell A., Redpath D. A. G., Griffiths P. W., Cabeza L. F. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. J. Energy Storage, 13, 262-267, https://doi.org/10.1016/j.est.2017.07.025
https://doi.org/10.1016/j.est.2017.07.025
12. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E.  Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials. 13, 2856. doi.org/10.3390/ma13122856
https://doi.org/10.3390/ma13122856
13. Moravskyi V., Dziaman I., Suberliak S., Kuznetsova М., Tsimbalista Т., Dulebova L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12 (88), 50-57. doi.org/10.15587/1729-4061.2017.108462
https://doi.org/10.15587/1729-4061.2017.108462
14. Moravskyi V., Kucherenko А., Kuznetsova М., Dziaman I., Grytsenko О., Dulebova L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40-47. doi: 10.15587/1729-4061.2018.131446
https://doi.org/10.15587/1729-4061.2018.131446
15. Kobyliukh A., Olszowska K., Szeluga U., Pusz S. (2020). Iron oxides/graphene hybrid structures - Preparation, modification, and application as fillers of polymer composites. Advances in Colloid and Interface Science, 285, 102285. doi.org/10.1016/j.cis.2020.102285.
https://doi.org/10.1016/j.cis.2020.102285
16. Guo Y., Ruan K., Shi X., Yang X., Gu J. (2020). Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 193, 108134. doi:10.1016/j.compscitech.2020.108134 
https://doi.org/10.1016/j.compscitech.2020.108134
17. Kucherenko А. N., Mankevych S. О., Kuznetsova М. Ya., Moravskyi V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140-145. doi.org/10.23939/ctas2020.02.140
https://doi.org/10.23939/ctas2020.02.140