PECULIARITIES OF METALIZATION OF PULLED POLYETHYLENE

2020;
: 140-145
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The results of experimental studies of the peculiarities of metallization of granular polyethylene are presented. The influence of concentration factors on the metallization process of zinc-activated polyethylene granules of brand Liten PL-10 was investigated. It is established that by changing the concentration of copper sulfate and sodium hydroxide, as well as the degree of loading of polymeric raw materials, it is possible to effectively regulate the amount of recovered copper on granules of polyethylene, and therefore the thickness of the metal layer formed on them. The use of the method of preliminary processing of activated polyethylene granules in a solution of copper sulfate can significantly reduce the induction period and increase the rate of recovery of copper ions.

1. European Council. Council of the European Union (2019). Press releases: Council adopts ban on single-use plastics. Retrieved from https://www.consilium.europa.eu/en/press/press-releases/2019/05/21/counc...
2. Yadav, S., Gangwar, S., Singh, S. (2017). Micro/Nano Reinforced Filled Metal Alloy Composites: A Review Over Current Development in Aerospace and Automobile Applications. Materialstoday: Proceedings, 4(4), 5571-5582. doi:10.1016/j.matpr.2017.06.014
https://doi.org/10.1016/j.matpr.2017.06.014
3. Pinto, G., Jimenez-Martin, A. (2001). Conducting aluminum-filled nylon 6 composites. Polymer Composites, 22(1), 65-70. doi: 10.1002/pc.10517
https://doi.org/10.1002/pc.10517
4. Gangwar, S., Yadav, S. (2017). A Review on Mechanical and Tribological Properties of Micro/Nano Filled Metal Alloy Composites. Materialstoday: Proceedings. 4(4), 5583-5592. doi: 10.1016/j.matpr.2017.06.015
https://doi.org/10.1016/j.matpr.2017.06.015
5. Sharma, S., Sudhakara, P., Nijjar, S., Saina, S., Singh, G. (2018). Recent Progress of Composite Materials in various Novel Engineering Applications. Materialstoday: Proceedings. 5(14), 28195-28202. doi: 10.1016/j.matpr.2018.10.063
https://doi.org/10.1016/j.matpr.2018.10.063
6. Chavan, S., Gumtapure, V., Perumal, A. (2020). Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials. Journal of Energy Storage. 27, 101045. doi: 10.1016/j.est.2019.101045
https://doi.org/10.1016/j.est.2019.101045
7. Navarro, L., Barreneche, C., Castell, A., Redpath, D., Griffiths, P., Cabeza, L. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. Journal of Energy Storage. 13, 262-267. doi: 10.1016/j.est.2017.07.025
https://doi.org/10.1016/j.est.2017.07.025
8. Pinto, G., Maidana, M. B. (2001). Conducting polymer composites of zinc-filled nylon 6. Journal of Applied Polymer Science. 82(6), 1449- 1454. doi: 10.1002/app.1983
https://doi.org/10.1002/app.1983
9. Mamunya, Y. P., Davydenko, V. V., Pissis, P., Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal. 38(9), 1887-1897. doi: 10.1016/S0014-3057(02)00064-2
https://doi.org/10.1016/S0014-3057(02)00064-2
10. Tanaka, T., Montanari, G. C., Mulhaupt, R. (2004). Polymer nanocomposites as dielectrics and electrical insulationperspectives for processing technologies, material characterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation. 11(5), 763-784. doi: 10.1109/TDEI.2004.1349782
https://doi.org/10.1109/TDEI.2004.1349782
11. Pukánszky, B. (2005). Interfaces and interphases in multicomponent materials: past, present, future. European Polymer Journal. 41(4), 645-662. doi: 10.1016/j.eurpolymj.2004.10.035
https://doi.org/10.1016/j.eurpolymj.2004.10.035
12. Nurazreena, Luay Bakir Hussain, Ismail, H., Mariatti, M. (2006). Metal filled high density polyethylene composites - electrical and tensile properties. Journal of Thermoplastic Composite Materials. 19(4), 413-425. doi: 10.1177/0892705706062197
https://doi.org/10.1177/0892705706062197
13. Bielikov S. B. Volchok I. P. Mitiaiev O. A. Pleskach V. M. Savchenko V. O. (2017). Kompozytsiini materialy v aviabuduvanni (ohliad). Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni. 2, 32-40. Rezhym dostupu: http://nbuv.gov.ua/UJRN/Nmt_2017_2_8
14. Moravskyi V.S. Tymkiv I.A. Bodnarchuk P.T. (2016). Metalizatsiia polivinilkhlorydnoho plastykatu khimichnym vidnovlenniam v rozchynakh. Visnyk NU "Lvivska Politekhnika" Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia". 841, 405-409. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/34483
15. Moravskyi V.S. Kucherenko A.M. Yakushyk I.S. Dulebova L. Harbach T. (2018). Tekhnolohiia metalizatsii hranulovanoi polimernoi syrovyny. Visnyk NU "Lvivska Politekhnika" Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia". 886, 205-212. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/43632
16. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, М., Tsimbalista, Т., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12(88), 50-57. doi: 10.15587/1729-4061.2017.108462
https://doi.org/10.15587/1729-4061.2017.108462
17. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, О., Kuznetsova, M. (2017). Features of the Production of Metal-filled Composites by Metallization of Polymeric Raw Materials, 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties (NAP-2017). IEEE. doi: 10.1109/NAP.2017.8190265
https://doi.org/10.1109/NAP.2017.8190265
18. Moravskyi, V., Kucherenko, А., Kuznetsova, М., Dziaman, I., Grytsenko, О., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40-47. doi: 10.15587/1729-4061.2018.131446
https://doi.org/10.15587/1729-4061.2018.131446
19. Moravskyi V.S. Dziaman I.Z. Baran N.M. Kucherenko A.M. Dulebova L. (2017). Doslidzhennia efektyvnosti aktyvatsii poroshkopodibnoho polivinilkhlorydu. Visnyk NU "Lvivska Politekhnika" Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia". 868, 413-418. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/40676