COMBINED SOLUTIONS USING BIOSURFACTANTS BASED ON WATER-INSOLUTE BIOLOGICALLY ACTIVE COMPOUNDS

2022;
: 96-101
1
Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine
2
Lviv Polytechnic National University
3
National University Lviv Polytechnic
4
Lviv Polytechnic National University
5
Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Department of Technology of Biologically Active Substances, Pharmacy & Biotechnology, Lviv National Polytechnic University
6
Lviv Polytechnic National University

Solutions of biologically active substances insoluble in water (thiosulfoesters, anthraquinone derivatives, pyrazoline) were obtained using a combined solvent and biogenic surfactants. For this purpose were used rhamnolipids, their biocomplex with polysaccharides synthesized by the Pseudomonas SP strain. PS-17, trehalosolipids of the Rhodococcus erythropolis AU-1 strain, and the commercial biosurfactant surfactant. Aqueous dispersed systems of the studied substances were also obtained. The research results have prospects for use in pharmacy.

  1. Pertsev, I. M., Ruban, O. A. (2015). Dopomizhni rechovyny u vyrobnytstvi likiv. Apteka online. https://www.apteka.ua/article/320536
  2. Sivapathasekaran, C. & Sen, R. (2017). Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential. Tenside Surfactants Detergents, 54(2), 92-107. https://doi.org/10.3139/113.110482
  3. Tiso, T., Thies, S., Müller, M., Tsvetanova, L., Carraresi, L., Bröring, S., … Blank, L. M. (2017). Rhamnolipids: Production, Performance, and Application. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals, Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham.1-37. https://doi.org/10.1007/978-3-319-31421-1_388-1
  4. Pokynbroda, T. Ya., Karpenkoo, O. V., Lubenets V. I. et al. (2017). Biosynthesis of surfactants by microorganisms of the genera pseudomonas on soybean oil and investigation of their properties. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia. 868. 222-228. https://ena.lpnu.ua/handle/ntb/40644
  5. Rocha e Silva, N. M. P., Rufino, R. D., Luna J. M. et al. (2014). Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatalysis and Agricultural Biotechnology. 3, 132-139. https://doi.org/10.1016/j.bcab.2013.09.005
  6. Shu, Q., Lou, H., Wei, T., Liu, X., Chen, Q. (2021). Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics, 13, 227. https://doi.org/10.3390/pharmaceutics13020227
  7. Derzhavna farmakopeya Ukrayiny: v 3 t., 2-e vyd. T. 1. (2015). Kharkiv: Derzhavne pidpryyemstvo «Naukovyy farmakopeynyy tsentr yakosti likarsʹkykh zasobiv»
  8. Lubenets V., Stadnytska N., Baranovych D. et al. (2019). Thiosulfonates: the prospective substances against fungal infections. Fungal infection: Intech Open. https://doi.org/10.5772/intechopen.84436
  9. Boldyrev, B. G., Kolmakova, L. E., & Pershin G. M. (1968). Esulan is a new remedy for the treatment of foot-and-mouth disease. Chem. Farm Journal, 2 (4), 12-16. https://doi.org/10.1007/BF00759876
  10. Zvarych, V., Stasevych, M., Lunin, V. et al. (2016). Synthesis and investigation of antioxidant activity of the dithiocarbamate derivatives of 9,10-anthracenedione. Monatsh Chem, 147, 2093-2101 https://doi.org/10.1007/s00706-016-1839-y
  11. Khomʺyak S.V., Zayarnyuk N.L., Yaremkevych O.S. ta insh. (2008). Biolohichna aktyvnistʹ vodnykh rozchyniv 1,3-dyfenil-5-(4-hidroksy-3,5-dy-tret-butylfenil)-pirazolinu-2. Visnyk NU "Lʹvivsʹka politekhnika". Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 609, 120-123.
  12. Stakhira, P., Khomyak S., Cherpak V. et al. ( 2012). Blue organic light-emitting diodes based on pyrazoline phenyl derivative. Synthetic Metals. 162, 3(4), 352-355. https://doi.org/10.1016/j.synthmet.2011.12.017
  13. Pokynbroda, T., Karpenko, I., Midyana, H., Karpenko, O. (2019). Isolation of Surfactants Synthesized by the Pseudomonas Bacteria and Study of Their Properties. Innov Biosyst Bioeng, 3(2), 70-76. https://doi.org/10.20535/ibb.2019.3.2.165838
  14. Koretska, N, Karpenko, О, Baranov, V et al. (2019). Biological Properties of Surface-Active Metabolites of Rhodococcus erythropolis Au-1 and Their Prospects for Crop Technology. Innov Biosyst Bioeng. 3(2), 77-85. https://doi.org/10.20535/ibb.2019.3.2.165165
  15. Seydlová, G., Svobodová, J. (2008). Review of surfactin chemical properties and the potential biomedical applications. Cent.Eur.J.Med, 3, 123-133. https://doi.org/10.2478/s11536-008-0002-5
  16. Singh, P, Cameotra, SS. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 22(3),142-6. https://doi.org/10.1016/j.tibtech.2004.01.010
  17. Kothekar, Shr.C., Ware, A.M., Waghmare, J.T., & Momin, S.A. (2007). Comparative Analysis of the Properties of Tween‐20, Tween‐60, Tween‐80, Arlacel‐60, and Arlacel‐80. Journal of Dispersion Science and Technology, 28(3), 477-484. https://doi.org/10.1080/01932690601108045
  18. Kandadi Prabhakar, Syed Muzammil Afzal, Goparaboina Surender, Veerabrahma Kishan. (2013). Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharmaceutica Sinica B, 3(5), 345-353. https://doi.org/10.1016/j.apsb.2013.08.001