: 147-159
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

The most common additive methods of processing polylactide materials are analyzed. Attention is paid to the features of methods of selective laser sintering, stereolithography and modeling by layer surfacing, as well as the advantages and disadvantages of using biodegradable materials, including polylactide. Approaches to the development of composite materials based on polylactide with additives of different nature and their technological and operational characteristics are substantiated.

1. Lopes M.S., Jardini A.L., Filho R.M. (2012) Poly(lactic acid) production for tissue engineering Applications, Procedia Eng, 42, 1402-1413.
2. Syed A.M. Tofail, Elias P. Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa O'Donoghue, Costas Charitidis (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, 21 (1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001.
3. Yahya Bozkurt, Elif Karayel (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends. Journal of Materials Research and Technology, 14, 1430-1450. https://doi.org/10.1016/j.jmrt.2021.07.050.
4. Tuan D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate T.Q. Nguyen, David Hui (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172-196.  https://doi.org/10.1016/j.compositesb.2018.02.012.
5. Gokuldoss, P.K.; Kolla, S.; Eckert, J. (2017) Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines. Materials  10(6), 672. https://doi.org/10.3390/ma10060672
6. N. Shahrubudin, T.C. Lee, R. Ramlan,(2019) An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 35, 1286-1296.  https://doi.org/10.1016/j.promfg.2019.06.089.
7. Riya Singh, Akash Gupta, Ojestez Tripathi, Sashank Srivastava, Bharat Singh, Ankita Awasthi, S.K. Rajput, Pankaj Sonia, Piyush Singhal, Kuldeep K. Saxena, (2020) Powder bed fusion process in additive manufacturing: An overview, Materials Today: Proceedings, 26(2), 3058-3070. https://doi.org/10.1016/j.matpr.2020.02.635.
8. Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J.(2021) A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 13, 598. https://doi.org/10.3390/polym13040598
10. Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, Xiaoqun Zhu (2020) Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110-115. https://doi.org/10.1016/j.bioactmat.2019.12.003.
11. Tuan Noraihan Azila Tuan Rahim, Abdul Manaf Abdullah & Hazizan Md Akil (2019) Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polymer Reviews, 59:4, 589-624. DOI: 10.1080/15583724.2019.1597883
12. Mazurchevici, A.D.; Nedelcu, D.; Popa, R. (2020) Additive manufacturing of composite materials by FDM technology: A review. Indian J. Eng. Mater. Sci. 27, 179-192. http://op.niscair.res.in/index.php/IJEMS/article/view/45920
13. Vithani, K., Goyanes, A., Jannin, V. et al. (2019) An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res 36, 4. https://doi.org/10.1007/s11095-018-2531-1
14. Vithani, K., Goyanes, A., Jannin, V. (2019) An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res 36, 4. https://doi.org/10.1007/s11095-018-2531-1
15. Garlotta, D. A (2001) Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment 9, 63-84. https://doi.org/10.1023/A:1020200822435
16.  K. Madhavan Nampoothiri, Nimisha Rajendran Nair, Rojan Pappy John (2010) An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092.
17. Baran, Eda Hazal, and H. Yildirim Erbil (2019) Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids and interfaces 3.2, 43.
18. Rahul M. Rasal, Amol V. Janorkar, Douglas E. Hirt (2010) Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003.
19. Groenendyk, M.; Gallant, R. (2013) 3D printing and scanning at the Dalhousie University Libraries: A pilot project. Libr. Hi Tech., 31, 34-41.
20. M. Heidari-Rarani, M. Rafiee-Afarani, A.M. Zahedi (2019) Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites, Composites Part B: Engineering, 175, 107147. https://doi.org/10.1016/j.compositesb.2019.107147.
21. Estakhrianhaghighi, E. (2020) 3D-Printed Wood-Fiber Reinforced Architected Cellular Composites. Adv. Eng. Mater., 20, 2000565.
22. Scaffaro, R. (2020) Lignocellulosic fillers and graphene nanoplatelets as hybrid reinforcement for polylactic acid: Effect on mechanical properties and degradability. Compos. Sci. Technol., 190, 108008.
23. Ambone, T.; Torris, A.; Shanmuganathan, K. (2020) Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose. Polym. Eng. Sci., 60, 1842-1855.
24. Antoniac, I.; Popescu, D.; Zapciu, A.; Antoniac, A.; Miculescu, F.; Moldovan, H. (2019) Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing. Materials, 12, 719. https://doi.org/10.3390/ma12050719
25. Ipek Bayraktar, Doga Doganay, Sahin Coskun, Cevdet Kaynak, Gulcin Akca, Husnu Emrah Unalan (2019) 3D printed antibacterial silver nanowire/polylactide nanocomposites, Composites Part B: Engineering, 172, 671-678. https://doi.org/10.1016/j.compositesb.2019.05.059.
26. Tian, X. (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf., 88, 198-205.
27. Rahimizadeh, A. (2019) Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Compos. Part B Eng., 175, 107101.
28.Spinelli, G. (2018) Morphological, Rheological and Electromagnetic Properties of Nanocarbon/Poly(lactic) Acid for 3D Printing: Solution Blending vs. Melt Mixing. Materials, 11, 2256.
29. Yang, L. (2019) Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synth. Met., 253, 122-130. 
30. Zhou, X. (2021) Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. J. Mater. Sci. Technol., 60, 27-34.
31. Batakliev, T. (2019) Nanoindentation analysis of 3D printed poly (lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes. J. Appl. Polym. Sci., 136, 47260.
32. Ivanov, E. (2019) PLA/Graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl. Sci., 9, 1209.
33. Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. (2018) 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials, 11, 1947. https://doi.org/10.3390/ma11101947
34. Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; Grammatikos, S.A. (2021) Enhanced Mechanical, Thermal and Antimicrobial Properties of Additively Manufactured Polylactic Acid with Optimized Nano Silica Content. Nanomaterials , 11,1012. https://doi.org/10.3390/nano11041012
35. Wattanachai Prasong, Paritat Muanchan, Akira Ishigami, Supaphorn Thumsorn, Takashi Kurose, Hiroshi Ito (2020) Properties of 3D Printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends and Nano Talc Composites. Journal of Nanomaterials, vol. 2020, 16. https://doi.org/10.1155/2020/8040517
36. Levytsʹkyy V. YE., Masyuk A.S., Katruk D.S., Boyko M.V. (2021) Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktydu. Chemistry, Technology and Application of Substances. Lʹviv: Vyd-vo Lʹvivsʹkoyi politekhniky. 4. 179. https://doi.org/10.23939/ctas2021.02.179
37. Masyuk, А.S., Levytskyi, V.E., Kysil, K.V., Bilyi, L.М., Humenetskyi, T.V. (2021) Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science. 56(3), 870. https://doi.org/10.1007/s11003-021-00506-5
38. Masyuk А. S., Kysil Kh. V., Katruk D. S., Skorokhoda V. I., Bilyi L. M.  & Humenetskyi Т. V. (2020) Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. Materials Science. 56 (4), 319. https://doi.org/10.1007/s11003-020-00432-y
39. Levytskyi V., Katruk D., Masyuk A., Kysil Kh., Bratychak M. Jr., Chopyk N. (2021) Resistance of Polylactide Materials to Water Mediums of the Various Natures. Chemistry&Chemical Technology. 15, 191. https://doi.org/10.23939/chcht15.02.191