ОСОБЛИВОСТІ ПЕРЕРОБКИ ПОЛІЛАКТИДНИХ КОМПОЗИТІВ З ВИКОРИСТАННЯМ В 3D ДРУЦІ. ОГЛЯД.

1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Національний університет «Львівська політехніка»
4
Національний університет “Львівська політехніка”
5
Національний університет “Львівська політехніка”

Проаналізовано найпоширеніші адитивні методи переробки полілактидних матеріалів. Звернена увага на особливості методів селективного лазерного спікання, стереолітографії та  моделювання методом пошарового наплавлення, а також на переваги і недоліки під час використання біодеградабельних матеріалів, зокрема полілактидних. Обґрунтовано підходи до розроблення композиційних матеріалів на основі полілактиду з додатками різної природи та їхні технологічні і експлуатаційні характеристики

1. Lopes M.S., Jardini A.L., Filho R.M. (2012) Poly(lactic acid) production for tissue engineering Applications, Procedia Eng, 42, 1402-1413.

2. Syed A.M. Tofail, Elias P. Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa O’Donoghue, Costas Charitidis (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, 21 (1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001.

3. Yahya Bozkurt, Elif Karayel (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends. Journal of Materials Research and Technology, 14, 1430-1450. https://doi.org/10.1016/j.jmrt.2021.07.050.

4. Tuan D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate T.Q. Nguyen, David Hui (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172-196.  https://doi.org/10.1016/j.compositesb.2018.02.012.

5. Gokuldoss, P.K.; Kolla, S.; Eckert, J. (2017) Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials  10(6), 672. https://doi.org/10.3390/ma10060672

6. N. Shahrubudin, T.C. Lee, R. Ramlan,(2019) An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 35, 1286-1296.  https://doi.org/10.1016/j.promfg.2019.06.089.

7. Riya Singh, Akash Gupta, Ojestez Tripathi, Sashank Srivastava, Bharat Singh, Ankita Awasthi, S.K. Rajput, Pankaj Sonia, Piyush Singhal, Kuldeep K. Saxena, (2020) Powder bed fusion process in additive manufacturing: An overview, Materials Today: Proceedings, 26(2), 3058-3070. https://doi.org/10.1016/j.matpr.2020.02.635.

8. Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J.(2021) A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 13, 598. https://doi.org/10.3390/polym13040598

10. Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, Xiaoqun Zhu (2020) Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110-115. https://doi.org/10.1016/j.bioactmat.2019.12.003.

11. Tuan Noraihan Azila Tuan Rahim, Abdul Manaf Abdullah & Hazizan Md Akil (2019) Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polymer Reviews, 59:4, 589-624. DOI: 10.1080/15583724.2019.1597883

12. Mazurchevici, A.D.; Nedelcu, D.; Popa, R. (2020) Additive manufacturing of composite materials by FDM technology: A review. Indian J. Eng. Mater. Sci. 27, 179–192. http://op.niscair.res.in/index.php/IJEMS/article/view/45920

13. Vithani, K., Goyanes, A., Jannin, V. et al. (2019) An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res 364. https://doi.org/10.1007/s11095-018-2531-1

14. Vithani, K., Goyanes, A., Jannin, V. (2019) An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res 36, 4. https://doi.org/10.1007/s11095-018-2531-1

15. Garlotta, D. A (2001) Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment 9, 63–84. https://doi.org/10.1023/A:1020200822435

16.  K. Madhavan Nampoothiri, Nimisha Rajendran Nair, Rojan Pappy John (2010) An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092.

17. Baran, Eda Hazal, and H. Yildirim Erbil (2019) Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids and interfaces 3.2, 43.

18. Rahul M. Rasal, Amol V. Janorkar, Douglas E. Hirt (2010) Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003.

19. Groenendyk, M.; Gallant, R. (2013) 3D printing and scanning at the Dalhousie University Libraries: A pilot project. Libr. Hi Tech., 31, 34–41.

20. M. Heidari-Rarani, M. Rafiee-Afarani, A.M. Zahedi (2019) Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites, Composites Part B: Engineering, 175, 107147. https://doi.org/10.1016/j.compositesb.2019.107147.

21. Estakhrianhaghighi, E. (2020) 3D-Printed Wood-Fiber Reinforced Architected Cellular Composites. Adv. Eng. Mater., 20, 2000565.

22. Scaffaro, R. (2020) Lignocellulosic fillers and graphene nanoplatelets as hybrid reinforcement for polylactic acid: Effect on mechanical properties and degradability. Compos. Sci. Technol., 190, 108008.

23. Ambone, T.; Torris, A.; Shanmuganathan, K. (2020) Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose. Polym. Eng. Sci., 60, 1842–1855.

24. Antoniac, I.; Popescu, D.; Zapciu, A.; Antoniac, A.; Miculescu, F.; Moldovan, H. (2019) Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing. Materials12, 719. https://doi.org/10.3390/ma12050719

25. Ipek Bayraktar, Doga Doganay, Sahin Coskun, Cevdet Kaynak, Gulcin Akca, Husnu Emrah Unalan (2019) 3D printed antibacterial silver nanowire/polylactide nanocomposites, Composites Part B: Engineering, 172, 671-678. https://doi.org/10.1016/j.compositesb.2019.05.059.

26. Tian, X. (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf., 88, 198–205.

27. Rahimizadeh, A. (2019) Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Compos. Part B Eng., 175, 107101.

28.Spinelli, G. (2018) Morphological, Rheological and Electromagnetic Properties of Nanocarbon/Poly(lactic) Acid for 3D Printing: Solution Blending vs. Melt Mixing. Materials, 11, 2256.

29. Yang, L. (2019) Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synth. Met., 253, 122–130. 

30. Zhou, X. (2021) Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. J. Mater. Sci. Technol., 60, 27–34.

31. Batakliev, T. (2019) Nanoindentation analysis of 3D printed poly (lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes. J. Appl. Polym. Sci., 136, 47260.

32. Ivanov, E. (2019) PLA/Graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl. Sci., 9, 1209.

33. Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. (2018) 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials11, 1947. https://doi.org/10.3390/ma11101947

34. Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; Grammatikos, S.A. (2021) Enhanced Mechanical, Thermal and Antimicrobial Properties of Additively Manufactured Polylactic Acid with Optimized Nano Silica Content. Nanomaterials , 11,1012. https://doi.org/10.3390/nano11041012

35. Wattanachai Prasong, Paritat Muanchan, Akira Ishigami, Supaphorn Thumsorn, Takashi Kurose, Hiroshi Ito (2020) Properties of 3D Printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends and Nano Talc Composites. Journal of Nanomaterials, vol. 2020, 16. https://doi.org/10.1155/2020/8040517

36. Levytsʹkyy V. YE., Masyuk A.S., Katruk D.S., Boyko M.V. (2021) Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktydu. Chemistry, Technology and Application of Substances. Lʹviv: Vyd-vo Lʹvivsʹkoyi politekhniky. 4. 179. https://doi.org/10.23939/ctas2021.02.179

37. Masyuk, А.S., Levytskyi, V.E., Kysil, K.V., Bilyi, L.М., Humenetskyi, T.V. (2021) Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science. 56(3), 870. https://doi.org/10.1007/s11003-021-00506-5

38. Masyuk А. S., Kysil Kh. V., Katruk D. S., Skorokhoda V. I., Bilyi L. M.  & Humenetskyi Т. V. (2020) Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. Materials Science. 56 (4), 319. https://doi.org/10.1007/s11003-020-00432-y

39. Levytskyi V., Katruk D., Masyuk A., Kysil Kh., Bratychak M. Jr., Chopyk N. (2021) Resistance of Polylactide Materials to Water Mediums of the Various Natures. Chemistry&Chemical Technology. 15, 191. https://doi.org/10.23939/chcht15.02.191