INFLUENCE OF BIOCONVERSION CONDITIONS OF GRAIN RAW MATERIALS ON THE VOLATILE SUBSTANCES COMPOSITION OF DISTILLATES

1
National University Lviv Polytechnic
2
National University Lviv Polytechnic
3
National University Lviv Polytechnic

The qualitative and quantitative composition of volatile substances of distillates obtained by bioconversion of wheat and rye under the conditions of using different enzyme preparations complexes were studied. It is shown that the content of higher alcohols in rye and wheat distillates increases by 33 and 39%, respectively, for which Laminex BG2 was additionally used as a source of cellulase, and the concentration of furfural increases by 2.2-3.5 times. The concentration of volatile substances in distillates indicates that the fungus Protease GS106 is more effective in bioconversion of both cereals than the bacterial Neutrase 1.5MG.

1. Plutowska B., Biernacka P., Wardencki W. (2010). Identification of volatile compounds in raw spirits of different organoleptic quality. Journal of the Institute of Brewing, 116(4), 433–439.

2. Cao Yu, Guangfa Xie, Chun Wu, Jian Lu (2010). Study on characteristic flavor compounds in traditional chinese rice wine - guyue longshan rice wine. Journal of the Institute of Brewing, 116(2), 182–189.

3. Biernacka P., Wardencki W. (2012). Volatile composition of raw spirits of different botanical origin. Journal of the Institute of Brewing, 118: 393–400. doi: 10.1002/jib.55.

4. Shyian P. L., Sosnytskyi, V. V. & Oliinichuk, S. T. (2009). Innovatsiini tekhnolohii spyrtovoi promyslovosti. Teoriia i praktyka: monohr. K. : Vydavnychyi dim «Askaniia», 2009. – 424 s.

5. Pielech-Przybylska K., Balcerek M., Nowak A. & Patelski P. (2017). The effect of different starch liberation and saccharification methods on the microbial contaminations of distillery mashes, fermentation efficiency, and spirits quality. Molecules, 22(10), 1647. doi: 10.3390/molecules22101647.

6. Kyrylenko R. H., Shyian P. L., Mudrak T. O. ta in. (2005). Vplyv tekhnolohichnykh parametriv zbrodzhuvannia susla na nakopychennia letkykh orhanichnykh domishok spyrtovoi brazhky. Novi tekhnolohii ta tekhnichni rishennia v kharchovii ta pererobnii promyslovosti : sohodennia i perspektyvy: IX Mizhn. nauk.-tekhn. konf., 17-19 zhovtnia 2005. 61-62.

7. Oliinichuk S. T., Lysak T. I., Marynchenko L. V. (2015). Zalezhnist nakopychennia hlitserolu ta zbrodzhuvannia hidrolizativ krokhmalevmisnoi syrovyny vid kontsentratsii susla. Biotechnologia Acta. 8, 4, 128-134. doi: 10.15407/biotech8.04.128.

8. Walker G.M. (1998). Yeast physiology & Biotechnology; John Wiley & Sons: Chichester, UK; New York, NY, USA.

9. Walker G. M. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2016, 2, 30. doi:10.3390/beverages2040030.

10. Christoph N., Bauer-Christoph C. (2007). Flavour of spirit drinks: raw materials, fermentation, distillation, and ageing, flavour frag, 219–225, Springer, Berlin.

11. Ebringerová A. (2005). Structural diversity and application potential of hemicelluloses. Macromol. Symp. 232, 1–12. doi: 10.1002/masy.200551401.

12. Hazelwood L.A., Daran J.M., Maris A., Pronk, J.T., Dickinson J.R. (2008). The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol., 74, 2259–2266.

13. Pietruszka M., Pielech-Przybylska K., Szopa J. S. (2010). Synthesis of higher alcohols during alcoholic fermentation of rye mashes. Zeszyty Naukowe Chemia Spożywcza i Biotechnologia, 74, 51–64.

14. DSTU HOST 29144:2009 (YSO 711-85 Zerno i zernoprodukty. Vyznachannia volohosti (bazovyi kontrolnyi metod) (YSO711-85).

15. HSTU 46.045.2003 Zerno. Metody vyznachennia umovnoi krokhmalystosti. Kyiv: Ministerstvo ahrarnoi polityky Ukrainy. Chynnyi vid 01.01.2004. 23 s. (Haluzevyi standart Ukrainy).

16. Swanston J. S., Smith P. L, Gillespie T. L. & Reginald C. Agu (2007). Associations between grain - Characteristics and alcohol yield among soft wheat varieties. Journal of the Science of Food and Agriculture, 87(4), 676–683. doi: 10.1002/jsfa.2767.

17. Hromov O. (2021). Pryzabute zhyto: sohodennia ta maibutnie. http://agro-business.com.ua/agro/ekspertna-dumka/item/21482-pryzabute-zhyto-sohodennia-ta-maibutnie.html.

18. Protsan N. V., & Tkachenko, L. V. (2021). Aktyvatsiia fermentiv pid chas rozvariuvannia zhytnikh zamisiv pidvyshchenoi kontsentratsii. Tekhnichni nauky ta tekhnolohii, 1(19), 241–249. doi: 10.25140/2411-5363-2020-1(19)-241-249.

19. Németh R. N., Tömösközi S. (2021). Rye: current state and future trends in research and applications/ Acta Alimentaria, 50, 4, 620–640. doi: 10.1556/066.2021.00162.

20. Lekkas C, Hill AE, Taidi B, Hodgson J, Stewart GG (2009). The role of small wort peptides in brewing fermentations. J. Inst. Brew., 115, 134–13943.

21. Salari R., Salari R. (2017). Investigation of the best Saccharomyces cerevisiae growth condition. Electron Physician., Jan 25. doi: 10.19082/3592.

22. Battista F., Bolzonella D. (2018). Some critical aspects of the enzymatic hydrolysis at high dry-matter content: a review. Biofuels, Bioproducts and Biorefening, 12 (4), 711-723. doi: 10.1002/bbb.1883.

23. Palianytsia L. Ia., Berezovska N. I., Pikh Z. H. (2020). Spelta yak syrovyna u biotekhnolohichnykh protsesakh. Chemistry, Technology and Application of Substances, 3, 2, 75-78. doi: 10.23939/ctas2020.02.073.

24. Barbosa C., Mendes-Faia A., Mendes-Ferreira A. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol., 2012, 160, 87–93.

25. Ebringerová A. (2005). Structural diversity and application potential of hemicelluloses. Macromol. Symp., 232, 1–12. doi: 10.1002/masy.200551401.