The formation of the hydrogel polymer matrix duringthe gelatin cross-linking with dioxirane derivatives of polyoxyethylene glycolswere studied.The optimal conditions for their synthesis were determined. The characteristics of the hydrogel (swelling in different media, mechanical properties at different temperatures) were obtained depending on the type of dioxirane derivative and prepolymer ratio. The possibility of introducing several drugs into hydrogels was established and the release of these drugs was found to be prolonged.
1. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P. (2021). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 1-16.
https://doi.org/10.1080/10408398.2020.1870034
2. Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
3. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172-1186. https://doi.org/10.2174/1381612825666190425190754
4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 3(1), 6. https://doi.org/10.3390/gels3010006
5. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A Review. Progress in Biomaterials, 7(1), 1-21. https://doi.org/10.1007/s40204-018-0083-4
6. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings - a review. BioMedicine, 5(4). https://doi.org/10.7603/s40681-015-0022-9
7. Brumberg, V., Astrelina, T., Malivanova, T., & Samoilov, A. (2021). Modern wound dressings: Hydrogel dressings. Biomedicines, 9(9), 1235. https://doi.org/10.3390/biomedicines9091235
8. Fahr, A., & Liu, X. (2007). Drug delivery strategies for poorly water-soluble drugs. Expert Opinion on Drug Delivery, 4(4), 403-416. https://doi.org/10.1517/17425247.4.4.403
9. Zagórska-Dziok, M., & Sobczak, M. (2020). Hydrogel-based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics, 12(5), 396. https://doi.org/10.3390/pharmaceutics12050396
10. Gu, D., O'Connor, A. J., G.H. Qiao, G., & Ladewig, K. (2016). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879-895. https://doi.org/10.1080/17425247.2017.1245290
11. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 20(11), 20397-20408. https://doi.org/10.3390/molecules201119705
12. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel dressings for the treatment of Burn wounds: An up-to-date overview. Materials, 13(12), 2853. https://doi.org/10.3390/ma13122853
13. Siggia, S., & Hanna, J. G. (1988). Quantitative Organic Analysis via functional groups. R.E. Krieger Pub. Co.
14. Rezvanian, M., Ahmad, N., Mohd Amin, M. C., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin Ionic cross-linked hydrogel film for Wound Dressing Applications. International Journal of Biological Macromolecules, 97, 131-140.
https://doi.org/10.1016/j.ijbiomac.2016.12.079
15. Zhang, L., Jeong, Y., Zheng, S., Kang, D., Suh, H., & Kim, I. (2013). Сrosslinked poly(ethylene glycol) hydrogels with degradable phosphamide linkers used as a drug carrier in cancer therapy. Macromolecular Bioscience, 14(3), 401-410. https://doi.org/10.1002/mabi.201300327
16. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Dron, І. А., Stasiuk, A. V., Samaryk, V. Y., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 45-54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54
17. Mujono, A., Evelyn, J., & Prasetyanto, E. A. (2020). Development of hybrid gelatine/alginate/PVA hydrogels for extended delivery of antibiotics. IOP Conference Series: Materials Science and Engineering, 858(1), 012033. https://doi.org/10.1088/1757-899X/858/1/012033
18. Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Dixon, B., & Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530-544. https://doi.org/10.1016/j.biotechadv.2017.05.006
19. Ndlovu, S. P., Ngece, K., Alven, S., & Aderibigbe, B. A. (2021). Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 13(17), 2959. https://doi.org/10.3390/polym13172959
20. Gorobeiko, M. B., Larin, O. S., & Taran, Y. V. (2012). Effektivnost Aktovegina pri perifericheskoy angiopatii razlichnoy stepeni u bolnyih saharnyim diabetom. International journal of endocrinology (Ukraine), (2.42), 70-73. https://doi.org/10.22141/2224-0721.0.2.42.2012.176858
21. V. I. Palamarchyk, S. I. Odnorog, N. N. Gvozdyak, A. M. Vilgash. (2014). Local treatment of venous ulcer in varicose veins disease on diabetes mellitus background. Surgery of Ukraine (Ukraine), (4), 89-92.
22. Powers, J. G., Morton, L. M., & Phillips, T. J. (2013). Dressings for chronic wounds. Dermatologic Therapy, 26(3), 197-206. https://doi.org/10.1111/dth.12055