: 132-138
Lviv Polytechnic National University
Lviv Polytechnic National University
Technical University of Kosice (Slovakia)

The article presents the results of a study of the influence of the molecular weight of polyvinylpyrrolidone on the properties of two-layer hydrogel/polycaproamide membranes. Composite membranes are obtained by the developed method, which consists in the formation of hydrogel membranes with subsequent deposition from a solution into their outer surface of a reinforcing layer based on polyamide modified with polyvinylpyrrolidone. It was established that the molecular weight of polyvinylpyrrolidone, both in the composition of the hydrogel membrane and in the modifying solution, has a significant effect on the interaction between the layers of composite membranes and their characteristics, such as water content, bursting strength , and osmotic salt permeability.

  1. Fuli Zhao, Dan Yao, Ruiwei Guo, Liandong Deng, Anjie Dong and Jianhua Zhang (2015). Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications.  Nanomaterials,  5(4), 2054-2130. doi: 10.3390/nano5042054
  2. Hoare, T.R. & Kohane, D.S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer , 49, 1993-2007.
  3. Li, Y., Rodrigues, J. & Tomas, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41, 2193-2221.
  4. Annabi, N., Tamayol, A., Uquillas, J.A., Akbari, M., Bertassoni, L.E., Cha, C., Camci-Unal, G.,… Khademhosseini, A. (2014). 25th Anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 26(1), 85-123. DOI: 10.1002/adma.201303233
  5. Caló, E. & Khutoryanskiy, V.V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 65, 252-267.
  6. Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science , 336, 1124-1128.
  7. Hoffman, A.S. (2012). Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. , 64, 18-23.
  8. Peppas, N.A., Hilt, J.Z., Khademhosseini, A. & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater., 18, 1345-1360.
  9. Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A. & Peppas, N.A. (2009). Hydrogels in regenerative medicine. Adv. Mater., 21, 3307-3329. doi: 10.1002/adma.200802106
  10. Melʹnyk, YU.YA., Baran, N.M., Yatsulʹchak, H.V. & Komyshna M.H. (2017). Formuvannya ta vlastyvosti kompozytsiynykh poliamid-hidrohelevykh membran. Visnyk NU"LP" "Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya", 868, 406-412.
  11. Suberlyak, O. (2011). UA Patent 94173.
  12. Suberlyak, O. V., Baran, N. M., & Yatsul'chak, H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392-397.
  13. Kargin, V.A., Slonimskiy, G.L. (1967). Kratkie ocherki po fiziko-himii polimerov, Moskva: Himiya, 232 p.
  14. Skorokhoda, V., Melnyk, Y., Semenyuk, N., Suberlyak, O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9\ (1), 55-59.
  15. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121-126.
  16. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi:
  17. Dubyaga, V. P., Perepechkin, L. P., & Katalevskiy, Ye. Ye. (1981). Polimernyye membrany. Moskva: Khimiya.