Regularities of hydrogel films saturation with alcoholic solutions

2021;
: 219-223
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The results of saturation with alcohol solutions of hydrogel films based on copolymers of polyvinylpyrrolidone with poly-2-hydroxyethyl methacrylate have been considered in the paper. The impact of ethanol concentration which is the most often applied for the therapeutic extracts production based on medicinal herbs has been researched. The influence of samples preparation conditions on amount of alcohol-water mixture absorption was also determined.oplastic

1. Lu, H., Yuan, L., Yu, X. et al. (2018). Recent advances of on-demand dissolution of hydrogel dressings. Burns & Trauma, 6(35). https://doi.org/10.1186/s41038-018-0138-8
https://doi.org/10.1186/s41038-018-0138-8
2. Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R., Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
https://doi.org/10.3390/jfb9010013
3. Hennink, W. E., Kim, S. W., Feijen, J. (1984). Inhibition of surface induced coagulation by preadsorption of albumin-heparin conjugates. J. Biomed. Mat. Res., 18(8), 911-926. https://doi.org/10.1002/jbm.820180806
https://doi.org/10.1002/jbm.820180806
4. Suberlyak, O., Melnyk, J., Baran, N. (2007). High-hydrophilic membranes for dialysis and hemodialysis. Engineering Biomaterials, (63-64), 18-19.
5. Skorokhoda, V., Melnyk, Yu., Semenyuk, N.et al. (2017). Film Hydrogels on the Basis of Polyvinilpyrrolidone Copolymers with Regulated Sorption-Desorption Characteristics. Chemistry & Chemical Technology, 11(2), 171-174.
https://doi.org/10.23939/chcht11.02.171
6. Pogorielov, M. V., Kornienko, V. V., Tkachenko, Yu. A., Oleshko, O. M. (2013). Materials to the skin defects: chitosan derivatives and perspectives for their application (literature review). Journal of Clinical and Experimental Medical Research, 1(3), 275-284. https://essuir.sumdu.edu.ua/bitstream-download/ 123456789/33175/1/Pogorielov_skin%20defects.pdf
7. Lebediev, V. V., Tykhomyrova, T. S., Savchenko, D. O., Lozovytskyi, A. O., Lytvynenko, Ye. I. (2020). Vyvchennia osoblyvostei heleutvorennia ta reolohichnykh protsesiv hidrohelei na osnovi zhelatynu dlia kosmetolohii ta medytsyny. Enerhetyka teplo tekhnolohii ta enerhozberezhennia, 4. doi: 10.20998/2078-5364.2020.4.01
https://doi.org/10.20998/2078-5364.2020.4.01
8. Baron, R. I., Culica, M. E., Biliuta, G., Bercea, M. [and others] (2019). Physical hydrogels of oxidized polysaccharides and poly(vinyl alcohol) for wound dressing applications. Materials, 12(9), 1569. doi: 10.3390/ ma12091569.
https://doi.org/10.3390/ma12091569
9. Baena, J.M., Galvez-Martin, P., Sabata, R. (2017). Development of scaffolds for regenerative medicine. Journal of Biotechnology & Biomaterials, 7(2), 56. DOI: 10.4172/2155-952X.C1.074
https://doi.org/10.4172/2155-952X.C1.074
10. Lavrov, N. A. (2018). Himicheskaya modifikatsiya i svoystva polimerov 2-gidroksietilmet-akrilata. Plast. massyi, (7-8), 3-10. https://doi.org/10.35164/0554-2901-2018-7-8-3-10
https://doi.org/10.35164/0554-2901-2019-9-10-3-7
11. Suberlyak, O., Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. [in:] Haider S. and Haider A. (Eds.), Hydrogels. IntechOpen, London, 136-214. DOI: 10.5772/intechopen.72082
https://doi.org/10.5772/intechopen.72082
12. Suberlyak, O. V., Mel'nyk, Yu. Ya., Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50, 889-896. DOI: 10.1007/s11003-015-9798-8.
https://doi.org/10.1007/s11003-015-9798-8
13. Dzumedzei, Yu. I., Pobihai, H. A., Konovalova, V. V., Burban, A. F. (2010). Otrymannia biosumisnykh plivok na osnovi khitozanu ta doslidzhennia yikhnikh vlastyvostei. Naukovi zapysky, 105. Khimichni nauky i tekhnolohii, 51-56. http://ekmair.ukma.edu.ua/ bitstream/handle/123456789/3814/Dzumedzei_Otrymannia.pdf?sequence=1&isAllowed=y
14. Schmitt, Е., Holtz, М., Klinkmann, Н., Esther, G., Courtney, J. M. (1983). Heparin binding and release properties of DEAE cellulose membranes. Biomaterials, 4(4), 309-313. DOI: 10.1016/0142-9612(83)90034-0
https://doi.org/10.1016/0142-9612(83)90034-0