Development of the powder composition with thiosulfonate component and study of its antimicrobial effect

2024;
: 131-139
1
Department of Technology of Biologically Active Substances, Pharmacy & Biotechnology, Lviv National Polytechnic University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The paper presents the results of research on the development of a potential drug that consists of S-ethyl ester of 4-acetylaminobenzene sulfonic acid and excipients in the powder dosage form for topical use. The powder composition was substantiated on the basis of microbiological studies of the introduced compound and the dosage form based on it. The rational content of the compound as a biologically active substance in the powder was established. The optimal composition of excipients was selected. The obtained experimental data of microbiological studies indicate the presence of specific antibacterial and antifungal activity of the powder

1. Spivak, E. S., & Hanson, K. E. (2018). Candida auris: an Emerging Fungal Pathogen. Journal of clinical microbiology, 56(2), e01588-17. https://doi.org/10.1128/JCM.01588-17
https://doi.org/10.1128/JCM.01588-17
2. Perlin, D. S., Rautemaa-Richardson, R., & Alastruey-Izquierdo, A. (2017). The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet. Infectious diseases, 17(12), e383-e392. https://doi.org/10.1016/S1473-3099(17)30316-X
https://doi.org/10.1016/S1473-3099(17)30316-X
3. Robbins, N., Caplan, T., & Cowen, L. E. (2017). Molecular Evolution of Antifungal Drug Resistance. Annual review of microbiology, 71, 753-775. https://doi.org/10.1146/annurev-micro-030117-020345
https://doi.org/10.1146/annurev-micro-030117-020345
4. Arzanlou, M., Chai, W. C., & Venter, H. (2017). Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays in biochemistry, 61(1), 49-59. https://doi.org/10.1042/EBC20160063
https://doi.org/10.1042/EBC20160063
5. Baran, A., Kwiatkowska, A., & Potocki, L. (2023). Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Internationaljournalofmolecular sciences, 24(6), 5777. https://doi.org/10.3390/ijms24065777
https://doi.org/10.3390/ijms24065777
6. Aiken, A. M., Allegranzi, B., Scott, J. A., Mehtar, S., Pittet, D., & Grundmann, H. (2014). Antibiotic resistance needs global solutions. The Lancet. Infectious diseases, 14(7), 550-551. https://doi.org/10.1016/S1473-3099(14)70709-1
https://doi.org/10.1016/S1473-3099(14)70709-1
7. Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance, 11, 1645-1658. https://doi.org/10.2147/IDR.S173867
https://doi.org/10.2147/IDR.S173867
8. Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current opinion in microbiology, 51, 72-80. https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1016/j.mib.2019.10.008
9. Bilyayeva, O. O., Kryzhevsʹkyy, YE. YE., & Karolʹ, I. V. (2017). Osoblyvosti vydovoho skladu zbudnykiv hniyno-zapalʹnykh zakhvoryuvanʹ mʺyakykh tkanyn. Ukrayinsʹkyy medychnyy chasopys, 3 (119), 1-3;
10. Blume, L., Long, T. E., & Turos, E. (2023). Applications and Opportunities in Using Disulfides, Thiosulfinates, and Thiosulfonates as Antibacterials. International journal of molecular sciences, 24(10), 8659. https://doi.org/10.3390/ijms24108659
https://doi.org/10.3390/ijms24108659
11. Lubenets, V., Stadnytska, N., Baranovych, D., Vasylyuk, S., Karpenko, O., Havryliak, V., & Novikov, V. (2019). Thiosulfonates: The Prospective Substances against Fungal Infections. Fungal Infection. https://doi.org/10.5772/intechopen.84436
https://doi.org/10.5772/intechopen.84436
12. Cabello-Gómez, J. F., Aguinaga-Casañas, M. A., Falcón-Piñeiro, A., González-Gragera, E., Márquez- Martín, R., Agraso, M. D. M., Bermúdez, L., Baños, A., & Martínez-Bueno, M. (2022). Antibacterial and Antiparasitic Activity of Propyl-Propane-Thiosulfinate (PTS) and Propyl-Propane-Thiosulfonate (PTSO) from Allium cepa against Gilthead Sea Bream Pathogens in In Vitro and In Vivo Studies. Molecules (Basel, Switzerland), 27(20), 6900. https://doi.org/10.3390/molecules27206900
https://doi.org/10.3390/molecules27206900
13. Zaczynska, E., Czarny, A., Karpenko, L., Vasylyuk, S., Monka, N., Stadnytska, N., Fizer, L., Komarovska- Porokhnyavets, O., Jaranowski, M., Lubenets, V., & Zimecki, M. (2023). Obtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid. Chemistry & Chemical Technology, 17(2), 315-324. https://doi.org/10.23939/chcht17.02.315
https://doi.org/10.23939/chcht17.02.315
14. Guillamón, E., Mut-Salud, N., Rodríguez-Sojo, M. J., Ruiz-Malagón, A. J., Cuberos-Escobar, A., Martínez- Férez, A., Rodríguez-Nogales, A., Gálvez, J., & Baños, A. (2023). In Vitro Antitumor and Anti- Inflammatory Activities of Allium-Derived Compounds Propyl Propane Thiosulfonate (PTSO) and Propyl Propane Thiosulfinate (PTS). Nutrients, 15(6), 1363. https://doi.org/10.3390/nu15061363;
https://doi.org/10.3390/nu15061363
15. D'Amico, F., Casalino, G., Dinardo, F. R., Schiavitto, M., Camarda, A., Romito, D., Bove, A., & Circella, E. (2023). Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits. Veterinary sciences, 10(7), 411. https://doi.org/10.3390/vetsci10070411;
https://doi.org/10.3390/vetsci10070411
16. Aiken, A. M., Allegranzi, B., Scott, J. A., Mehtar, S., Pittet, D., & Grundmann, H. (2014). Antibiotic resistance needs global solutions. The Lancet. Infectious diseases, 14(7), 550-551. https://doi.org/10.1016/S1473-3099(14)70709-1 Lubenets, V., Vasylyuk, S., Monka, N., Bolibrukh, K., Komarovska-Porokhnyavets, O., Baranovych, D., Musyanovych, R., Zaczynska, E., Czarny, A., Nawrot, U., & Novikov, V. (2017). Synthesis and antimicrobial properties of 4-acylaminobenzenethiosulfoacid S-esters. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 25(2), 266-274. https://doi.org/10.1016/j.jsps.2016.06.007
https://doi.org/10.1016/j.jsps.2016.06.007
17. Derzhavna Farmakopeya Ukrayiny : v 3 t. (2-he vydannya), Derzhavne pidpryyemstvo «Ukrayinsʹkyy naukovyy farmakopeynyy tsentr yakosti likarsʹkykh zasobiv», 2-he vydannya, Kharkiv, (2015), t.3, 730;
18. Derzhavnyy reyestr likarsʹkykh zasobiv. http://www.drlz.com.ua;
19. Rybachuk, V. D., & Ruban, O. A. (2020). The marketing analysis of powders for application on the skin presented at the market of Ukraine. News of Pharmacy, (1(99)), 46-50. https://doi.org/10.24959/nphj.20.3
https://doi.org/10.24959/nphj.20.3
20. Reyestr veterynarnykh preparativ, kormovykh dobavok, premiksiv ta hotovykh kormiv. https://dpssukrainemy.sharepoint.com/:x:/g/personal/y_pyshenko_dpss_gov_... B6Lz5GzTmEZ7820BWTl3GVg?rtime=V0WVCwte3Eg.
21. Rybachuk, V. D., Ruban, O., & Filimonova, N. (2019). Microbiological justification for the choice of antimicrobic substances concentration in powder composition based on natural zeolite (clinoptyololite). Ukraïns'kij Bìofarmacevtičnij Žurnal, 0(1(58)), 4-9. https://doi.org/10.24959/ubphj.19.196
https://doi.org/10.24959/ubphj.19.196
22. Kryshchyshyn, A. P., Kaminskyy, D. V., & Lesyk, R. B. (2015). Creation of innovative drugs (approaches and methodology of drug design) - one of the main issues of the modern pharmaceutical education. Journal of Organic and Pharmaceutical Chemistry, 13(1(49)), 49-58. https://doi.org/10.24959/ophcj.15.833
https://doi.org/10.24959/ophcj.15.833
23. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4-17. https://doi.org/10.1016/j.addr.2012.09.019
https://doi.org/10.1016/j.addr.2012.09.019
24. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017n
https://doi.org/10.1021/jm020017n
25. Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., DeCrescenzo, G. A., Devraj, R. V., Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., & Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters, 18(17), 4872-4875. https://doi.org/10.1016/j.bmcl.2008.07.071
https://doi.org/10.1016/j.bmcl.2008.07.071
26. Kopak, N. A. (2023). Searching of biological activity of s-esters 4- acetylaminobenzenethiosulfoacid using methods of chemoinformatics. Chemistry, Technology and Application of Substances, 6(2), 76-86. https://doi.org/10.23939/ctas2023.02.076.
https://doi.org/10.23939/ctas2023.02.076
27. Molinspiration Cheminformatics (1986). Molinspiration Cheminformatics Software. https://www.molinspiration.com.
28. Sposib oderzhannya tiosulʹfonatnoyi substantsiyi. № 153357/ zayavn. Natsionalʹnyy universytet "Lʹvivsʹka politekhnika".-u202204890; zayavl. 20.12.2022; opubl. 21.06.2023; byul. № 25. Lubenetsʹ V. I., Fizer L. V., Zvarych V.I., Monʹka N.YA.
29. Escribano, P., & Guinea, J. (2022). Fluconazole-resistant Candida parapsilosis: A new emerging threat in the fungi arena. Frontiers in fungal biology, 3, 1010782. https://doi.org/10.3389/ffunb.2022.1010782.
https://doi.org/10.3389/ffunb.2022.1010782