Рolymers in biomedical engineering:materials for prosthesis and orthosis production (review)

2024;
: 211-220
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

Amputation of limbs as a result of the muscovites war as well as appearance of various injuries, accidents, diseases is becoming widespread in Ukraine. In this regard, the problem of high-quality prosthetics became relevant. The review highlights the main types of prostheses, orthoses and materials applied for their production also the problems concerning the research of materials and products. Studies conducted over the past 30 years show that prostheses are being made mainly of metal and polymer composites, as well as natural fiber-reinforced composites.  Studies have shown that the good mechanical properties of polymer matrix composites reinforced with fibers of various nature have made such materials promising for the prosthetics application.

1. Wolfson, N. (2012). Amputations in natural disasters and mass casualties: staged approach. Int Orthop; 36(10), 1983-1988.
https://doi.org/10.1007/s00264-012-1573-y
2. Pasquina, P.F., Miller, M., Carvalho, A.J., Corcoran M., Vandersea, J., Johnson, E., Chen, Y.T. (2014). Special considerations for multiple limb amputation. Current physical medicine and rehabilitation reports., 2(4), 273-289.
https://doi.org/10.1007/s40141-014-0067-9
3. Skelton, P. (2015). In: Harvey, A, Chapter.3 Amputee Rehabilitation.. Rehabilitation in Sudden Onset Disasters. (p.25). Handicap International and UK Emergency Medical Team.
4. Dillingham, T.R., Pezzin L.E. (2008). Rehabilitation setting and associated mortality and medical stability among persons with amputations. Archives of physical medicine and rehabilitation., 89(6), 1038-1045.
https://doi.org/10.1016/j.apmr.2007.11.034
5. World Health Organisation (WHO). (2001). International classification of functioning disability and health (ICF). World Health Organisation, Geneva.
6. Herasymenko, O., Pityn, M., Kozibroda, L., Mukhin, V., Dotsyuk, L., Galan, Y. (2018). Effectiveness of physical therapy interventions for young adults after lower limb transtibial amputation. Journal of Physical Education and Sport. 18, 1084-1091.
7. Mota, A. (2017). Materials of prosthetic limbs. California State Polytechnic University. Pomona, Mechanical Engineering Department. https://scholarworks.calstate.edu/downloads/h128ng975/
8. Andrew, C, S Sandra, CJ Schaschke and H Kinsman, et al. (2012). Prosthetic limb sockets from plant-based composite materials. Prosthetics and Orthotics International., 36(2 ), 181 -189.
https://doi.org/10.1177/0309364611434568
9. Quintero Quiroz and Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces, 67(1), 117-125.
https://doi.org/10.15446/revfacmed.v67n1.64470
10. Nurhanisah, M., Saba, N., Jawaid, M., and Paridah, M. (2017). Design of prosthetic leg socket from kenaf fibre based composites. Green Biocomposites, 127-141.
https://doi.org/10.1007/978-3-319-49382-4_6
11. Banerji, B., Banerji, J. (1984). A preliminary report on the use of cane and bamboo as basic construction materials for orthotic and prosthetic appliances. Prosthet Orthot Int.; 8(2), 91-96. doi: 10.3109/03093648409145355.
https://doi.org/10.3109/03093648409145355
12. Rosalam, C.M., Ibrahim, R . and Paridah Md. (2012). Tahir, natural based biocomposite material for prosthetic socket fabrication. ResearchGate, 5(1), 27-34.
13. Saba, N., Sultan. M.J MTH and Alothman. Y. O. (2017). Green biocomposites design and applications. Renewable and Green Energy, 1-2.
https://doi.org/10.1007/978-3-319-49382-4_1
14. Robert, D.N. and Mary Anne M. (2013). Environmental health consequences of land mines. Int J Occup and Enviro Health, 6(3), 243-248.
https://doi.org/10.1179/oeh.2000.6.3.243
15. Santosh Kumar, D.Z. and Sumit, B. (2020). Investigation of mechanical and viscoelastic properties of flax- and ramie-reinforced green composites for orthopedic implants. J MatEngin and Perf., 29(5), 3161-3171.
https://doi.org/10.1007/s11665-020-04845-3
16. Jin, Y.A., Plott, J., Chen, R., Wensman, J., Shih , A. (2015). Aditive manufacturing of custom orthoses and prostheses - A review. Protsedura CIRP . 36, 199-204. http://doi.org/cv6c .
https://doi.org/10.1016/j.procir.2015.02.125
17. Van der Spoel, E., Rozing, M.P., Houwing-Duistermaat, J.J., Slagboom, P.E., Beekman, M., de Craen, A.J., et al. (2015). Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 7(11), 956-963. http://doi.org/cv6j.
https://doi.org/10.18632/aging.100841
18. Scholz, M.S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., et al. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos Sci Technol. 71(16), 1791-1803. http://doi.org/bhmr26.
https://doi.org/10.1016/j.compscitech.2011.08.017
19. Kelly, B.M., Spires, M.C., Restrepo, J.A. (2007). Orthotic and Prosthetic Prescriptions for Today and Tomorrow. Phys Med Rehabil Clin N Am. 18(4), 785-858. http://doi.org/b332gr.
https://doi.org/10.1016/j.pmr.2007.08.001
20. Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (1996). Human Biomaterials Applications. Part III Biomedical Applications of Biomaterials. New York: Humana Press.
https://doi.org/10.1007/978-1-4757-2487-5
21. Quintero Quiroz, C and P Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces. 67(1), 117-125.
https://doi.org/10.15446/revfacmed.v67n1.64470
22. Hsu, J.D., Michael, J.W., Fisk, J.R. (2008). AAOS Atlas of Orthoses and Assistive Devices. 4th edi. Philadelphia: Mosby Elsevier.
23. Purna Irawan, A, F Jusuf Daywin, Fanando and T Agustino. (2016) . Mechanical characteristics of rattan reinforced fiberglass and epoxy composites for shank prosthesis application. International Journal of Engineering and Technology. 8(3), 1543-1549.
24. Odusote, J.K. and Oyewo, A.T. (2016). Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Engin and Tech, 7(1).
https://doi.org/10.21859/jet-06011
25. Odusote, J.K. and Oyewo, Jeleel, A.T. , Adebisi, A. and Akande, Kareem A. (2016). Mechanical Properties of Banana Pseudo Stem Fibre Reinforced Epoxy Composite as a Replacement for Transtibial Prosthetic Socket. J Asso of Prof Engineers of Trinidad and Tobago, 44(2), 4-10.
26. Purna Irawan, A. (2018). Failure mode analysis of ramie fiber reinforced composite material. Nommensen Int Conf on Tech and Eng
https://doi.org/10.1088/1757-899X/420/1/012060
27. Abbas, S.M. (2020). Fatigue characteristics and numerical modeling socket for patient with above knee prosthesis. Trans Tech Publications Ltd, 76-82.
https://doi.org/10.4028/www.scientific.net/DDF.398.76
28. Purna Irawan, A. (2015). Gait analysis of lower limb prosthesis with socket made from rattan fiber reinforced epoxy composites. Asian J App Sci, 03(01), 8-13.
29. Purna Irawan, A, Widjajalaksmi, K. and Reksoprodjo, A.H.S. (2011). Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int J Mech and Mat Engi, 6 (1), 46-50.
30. Sukania, A. (2015). Tensile strength of banana fiber reinforced epoxy composites materials. App Mech and Mat, 77, 260-263.
https://doi.org/10.4028/www.scientific.net/AMM.776.260
31. Al-Khazraji, K and JK Payman Sahbah Ahmed. (2011). Effect of reinforcement material on fatigue characteristics of trans-tibial prosthetic socket with pmma matrix. 4th Int Sci Conf of Salahaddin Uni-Su Erbil. 1-10.
32. Kumar, R., Subhash N. and Ajay Naik. (2017). Enhanced dynamic mechanical properties of kenaf epoxy composites. Advanced Materials Proceedings, 2(11), 749-757.
https://doi.org/10.5185/amp.2017/981
33. Jeetendra Mohan, K, Gangil, B., Ranakoti, L. (2020). Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics. Materials Today, 38(2021), 345-349.
https://doi.org/10.1016/j.matpr.2020.07.420
34. Arun, S., Kanagaraj, S. (2015). Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees. J Mech Behav Biomed Mater. 59, 1-10. http://doi.org/cv6h.
https://doi.org/10.1016/j.jmbbm.2015.12.013
35. Datta, D., Vaidya, S.K., Howitt, J., Gopalan, L. (1996). Outcome of fitting an ICEROSS prosthesis: views of trans-tibial amputees. Prosthet Orthot Int. 20(2), 111-115.
https://doi.org/10.3109/03093649609164427
36. Baars, E.C., Geertzen, J.H. (2005). Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int. 29(1), 27-37. http://doi.org/cfkpz6.
https://doi.org/10.1080/17461550500069612
37. Sanders, J.E., Nicholson, B.S., Zachariah, S.G., Cassisi, D.V., Karchin, A., Fergason, J.R. (2004). Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance. J Rehabil Res Dev. 41(2), 175-186. http://doi.org/cpbfn8.
https://doi.org/10.1682/JRRD.2004.02.0175
38. Yogeshvaran R. Nagarajan, Farukh Farukh, Vadim V. Silberschmidt, Karthikeyan Kandan, Radheshyam Rathore, Amit Kumar Singh and Pooja Mukul. (2023). Strength Assessment of PET Composite Prosthetic Sockets, Materials, 16(13), 4606; https://doi.org/10.3390/ma16134606.
https://doi.org/10.3390/ma16134606
39. Plesec, V., Humar, J., Dobnik-Dubrovski, P. and Harih, G. (2023). Numerical Analysis of a Transtibial Prosthesis Socket Using 3D-Printed Bio-Based PLA,Materials , 16(5), 1985; https://doi.org/10.3390/ma16051985.
https://doi.org/10.3390/ma16051985