Suspension oligomerization of the С9 fraction of diesel fuel pyrolysis by–products using n–(tert–butylperoxymethyl)–4–chloroaniline

2024;
: 73-79
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The suspension oligomerization of the unsaturated hydrocarbons of the C9 fraction of liquid by-products of diesel fuel pyrolysis initiated by N-(tert-Butylperoxymethyl)-4- chloroaniline was investigated. The influence of reaction conditions (reaction temperature and time, mixing intensity,  dispersed phase content, initiator concentration) on the yield and physico-chemical characteristics of hydrocarbon resins was determined. The optimal reaction conditions were selected. The temperature dependence of the relative and dynamic viscosity of the obtained hydrocarbon resin solutions was determined.

1. Mildenberg, R., Zander, M., & Collin, G. (2008). Hydrocarbon resins. John Wiley & Sons.

2. Zongyan, F. (2006). Application and Production of C9 Petroleum Resin. Petrochemical Industry Technology, 1.

3. Zohuriaan–Mehr, M. J., & Omidian, H. (2000). Petroleum Resins: An Overview. Journal of Macromolecular Science, Part C: Polymer Reviews, 40(1), 23–49. https://doi.org/10.1081/MC–100100577

4. Rahmatpour, A., & Ghasemi Meymandi, M. (2021). Large–Scale Production of C9 Aromatic Hydrocarbon Resin from the Cracked–Petroleum–Derived C9 Fraction: Chemistry, Scalability, and Techno–economic Analysis. Organic Process Research & Development, 25(1), 120–135. https://doi.org/10.1021/acs.oprd.0c00474

5. Dzinyak, B., & Melnyk, S. (2016). Initiated by organic peroxides cooligomerization of unsaturated hydrocarbons of C5 fraction –by–product of ethylene production. Chemistry and Chemical Technology, 10(2), 173–178. https://doi.org/10.23939/chcht10.02.173

6. Subtelnyy, R., Zhuravskyi, Y., & Dzinyak, B. (2023). Preparation of hydrocarbon resins by suspension oligomerisation of the С9 fraction of gasoline pyrolysis initiated by amino peroxides. Eastern–European Journal of Enterprise Technologies, 6(6(126)), 23–30. Scopus. https://doi.org/10.15587/1729–4061.2023.292527

7. Subtelnyi, R. О., Kichura, D. B., & Dzinyak, B. О. (2022). C9 fraction oligomerization initiated by N–substituted aromatic aminoperoxides. Chemistry, Technology and Application of Substances, 5(2), 88–93. https://doi.org/10.23939/ctas2022.02.088

8. Subtelnyy, R., Zhuravskyi, Y., Kichura, D., & Dzinyak, B. (2022). Oligomerization of C9 hydrocarbon fraction initiated by amino peroxides with cyclic substitute. Eastern–European Journal of Enterprise Technologies, 3(6–117), 23–31. Scopus. https://doi.org/10.15587/1729–4061.2022.259892

9. Didoshak, R. O., & Starchevskyi, V. L. (2005). Zalezhnist vykhodu ta fizyko–khimichnykh pokaznykiv naftopolimernykh smol vid kontsetratsii initsiatora. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 99–102.

10. Orobchuk, O. M., Subtelnyi, R. O., & Dziniak, B. O. (2014). Vyvchennia vplyvu dozuvannia initsiiatora na protses suspenziinoi koolihomeryzatsii vuheliovodnoi fraktsii. Eastern–European Journal of Enterprise Technologies, 4(6(70)), Article 6(70). https://doi.org/10.15587/1729–4061.2014.26236

11. Dzumedzei, M. V., Kucher, R. V., Turovskyi, A. A., & Koshovskyi, B. I. (1971). Doslidzhennia kinetyky termichnoho rozpadu azotumisnykh perekysnykh spoluk z tret–alkilnym radykalom. Ukraynskyi khymycheskyi zhurnal, 39, 1142–1145.

12. Kuchar, E. J. (1964). Detection and determination of the alkenes. В The Alkenes (1964) (с. 271–333). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470771044.ch5

13. Brooks, B. (2010). Suspension polymerization processes. Chemical Engineering & Technology, 33(11), 1737–1744.

14. Odian, G. (2004). Principles of polymerization. John Wiley & Sons.

15. Bhattad, A. (2023). Review on viscosity measurement: Devices, methods and models. Journal of Thermal Analysis and Calorimetry, 148(14), 6527–6543. https://doi.org/10.1007/s10973–023–12214–0

16. Ramli, H., Zainal, N. F. A., Hess, M., & Chan, C. H. (2022). Basic principle and good practices of rheology for polymers for teachers and beginners. Chemistry Teacher International, 4(4), 307–326. https://doi.org/10.1515/cti–2022–0010

17. Ma, J., Huang, X., Bae, H., Zheng, Y., Liu, C., Zhao, M., & Yu, M. (2016). Liquid Viscosity Measurement Using a Vibrating Flexure Hinged Structure and a Fiber–Optic Sensor. IEEE Sensors Journal, 16(13), 5249–5258. https://doi.org/10.1109/JSEN.2016.2562740

18. Münstedt, H. (2021). Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers, 13(7), Article 7. https://doi.org/10.3390/polym13071123