Disulfiram compositions based on biopolymers with graphite materials

1
National University Lviv Polytechnic
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

Based on the bibliometric analysis of scientific publications, patents, Internet resources and previously published results of our own research, the feasibility of developing a new disulfiram composition based on graphite materials with biopolymers was substantiated. Optimal methods were selected and samples of OG-A-DS (graphene oxide-albumin-disulfiram) nanocompositions were obtained in the form of an aqueous dispersion, as well as samples of TRG-BP (thermally expanded graphite-biopolymer) compositions, which will be potential carriers for drugs.

  1. Afzal, O., Altamimi, A. S. A., Nadeem, M. S., Alzarea, S. I., Almalki, W. H., Tariq, A., Mubeen, B., Murtaza, B. N., Iftikhar, S., Riaz, N., & Kazmi, I. (2022). Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials, 12(24), 4494. https://doi.org/10.3390/nano12244494
  2. Wang, Z., Colombi Ciacchi, L., & Wei, G. (2017). Recent Advances in the Synthesis of Graphene-Based Nanomaterials for Controlled Drug Delivery. Applied Sciences, 7(11), 1175. https://doi.org/10.3390/app7111175
  3. Bell R.G., Smith H.W. (1949). Preliminary report on clinical trials of antabuse. Can. Med. Assoc. J. 60. P. 286-288.
  4. McMahon A, Chen W, Li F. (2020). Old wine in new bottles: Advanced drug delivery systems for disulfiram-based cancer therapy. J Control Release. 10;319:352-359. https://DOI:10.1016/j.jconrel.2020.01.001.
  5. Likuvannya alkoholizmu v domashnikh umovakh. (24.06.2022). Klinika «Renesans Kyyiv». URL: https://www.rs-clinic.com.ua/uk/alkogolizm (data zvernennya 29.01.2025)
  6. Sobetov B., Zayarnyuk N., Krychrovska ., Kurka M., Hass J., Fedorova O., Novikov V. (2016). Injecting prolongs of disulfiram or quality of life in addictive disorders. Monographic series “Promoting healthy lifestyle”, Volume 1, Human health: realities and prospects, edited by N. V. (pp.268-276). Skotna, Drohobych: Posvit,
  7. Fillmore, N., Bell, S., Shen, C., Nguyen, V., La, J., Dubreuil, M., Strymish, J., Brophy, M., Mehta, G., Wu, H., Lieberman, J., Do, N., & Sander, C. (2021). Disulfiram use is associated with lower risk of COVID-19: A retrospective cohort study. Plos One, 16, Article 10. https://doi.org/10.1371/journal.pone.0259061
  8. Nagai, N., Yoshioka, C., Mano, Y., Tnabe, W., Ito, Y., Okamoto, N., & Shimomura, Y. (2015). A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure. Experimental Eye Research, 132, 115–123. https://doi.org/10.1016/J.EXER.2015.01.022
  9. Nagai N. (2016). Yakugaku zasshi. Journal of the Pharmaceutical Society of Japan, 136(10), 1385–1390. https://doi.org/10.1248/yakushi.16-00089
  10. Kang, X., Jadhav, S., Annaji, M., Huang, C.-H., Amin, R., Shen, J., Ashby, C. R., Jr., Tiwari, A. K., Babu, R. J., & Chen, P. (2023). Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics, 15(6), 1567. https://doi.org/10.3390/pharmaceutics15061567
  11. Song, L., Yang, Y., Hu, H. et al. (2024). Thermodynamic study on expanded graphite-based multifunctional composite phase change materials for personal thermal management and medical protection. J Therm Anal Calorim 149, 595–607 https://doi.org/10.1007/s10973-023-12662-8
  12. Viprya, P., Kumar, D., & Kowshik, S. (2023). Study of Different Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO). Engineering Proceedings, 59(1), 84. https://doi.org/10.3390/engproc2023059084
  13. Tekhnolohiya otrymannya hrafenu ta hrafenovykh oksydiv. (2021, kvitenʹ). Ukrayinsʹkyy derzhavnyy khimiko-tekhnolohichnyy universytet. URL: https://udhtu.edu.ua/wp-content/uploads/2021/04/colyaris.pdf. (data zvernennya 29.01.2025)
  14. Zou Zhengguang. (2013). Method for synthesizing graphene oxide by ultrasonic assistance Hummers method. CN102153075B. China. URL: https://patents.google.com/patent/CN102153075B/en (дата звернення 29.01.2025)
  15. Yang Huanghao, Jin Guixiao, Li JuanWu, LingjieGuo Shanshan. (2014). Graphene oxide drug carrier as well as preparation method and application thereof. CN103110957B. China. URL: https://patents.google.com/patent/CN103110957B/en (дата звернення 29.01.2025)
  16. Mike Roemmler. (2002). Method of making expanded graphite with high purity and related products. US20020168314A1. United States. URL: https://patents.google.com/patent/US20020168314A1/en (дата звернення 29.01.2025)
  17. Kang, X., Jadhav, S., Annaji, M., Huang, C.-H., Amin, R., Shen, J., Ashby, C. R., Jr., Tiwari, A. K., Babu, R. J., & Chen, P. (2023). Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics, 15(6), 1567. https://doi.org/10.3390/pharmaceutics15061567
  18. Nathalie Karaky, Andrew Kirby, McBain A. J., Butler J. A., Mohamed El Mohtadi, Banks C.E. & Whitehead K. A. (2020). Metal ions and graphene-based compounds as alternative treatment options for burn wounds infected by antibiotic-resistant Pseudomonas aeruginosa. Arch Microbiol, 202, 995–1004 https://doi.org/10.1007/s00203-019-01803-z
  19. Yu Ma, Dongchen Bai, Xinjun Hu, Nan Ren, Wensheng Gao, Songbo Chen, Huqiang Chen, Yue Lu, Jiangong Li & Yongxiao Bai. (2018). Robust and Antibacterial Polymer/Mechanically Exfoliated Graphene Nanocomposite Fibers for Biomedical Applications. ACS Applied Materials & Interfaces. 10(3), 3002-3010.