FEATURES OF OBTAINING AND PROPERTIES OF BINARY BLENDS OF POLYLACTIDES. REVIEW

2020;
: 146-156
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin

Technological features of obtaining biodegradable binary blends of polylactide with polyhydroxybutyrate, polycaprolactone, thermoplastic starch, polybutylene adipate-co-terephthalate, polybutylene succinate, polybutylene succinate-co-adipate are considered. The influence of polymer applications on physical-mechanical, thermophysical, technological properties and ability to biodegradation and biocompatibility of the obtained materials is revealed. The main possible directions of using binary biodegradable polylactide blends are considered.

1. Garlotta, A (2002) literature review of poly (lactic acid), J. Poly. Environ. 9, 63-84. https://doi.org/10.1023/A:1020200822435.
https://doi.org/10.1023/A:1020200822435
2. R.G. Sinclair, (1996) The case for polylactic acid as a commodity packaging plastic, J. Macromol. Sci., Part A: Pure Appl. Chem. 33,  33-585. https://doi.org/10. 1080/10601329608010880.
https://doi.org/10.1080/10601329608010880
3. D.W. Grijpma, A.J. Pennings, (1994) (Co)polymers of L-lactide, 2. Mechanical properties, Macromol. Chem. Phys. 195, 1649-1663. https://doi.org/10.1002/macp. 1994.021950516.
https://doi.org/10.1002/macp.1994.021950516
4. R. Auras, B. Harte, S. Selke, (2014) An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835-864. https://doi.org/10.1002/mabi.200400043.
https://doi.org/10.1002/mabi.200400043
5. R.E. Drumright, P.R. Gruber, D.E. Henton, (2000) Polylactic acid technology. Adv. Mater. 12, 1841-1846. https://doi.org/10.1002/1521-4095(200012)12:23b1841:: AID-ADMA1841N3.0.CO;2-E.
https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
6. M. Nofar, C.B. Park, (2014) Poly (lactic acid) foaming. Prog. Polym. Sci. 39, 1721-1741. https://doi.org/10.1016/j.progpolymsci.2014.04.001.
https://doi.org/10.1016/j.progpolymsci.2014.04.001
7. B. Gupta, N. Revagade, J. Hilborn, (2007) Poly (lactic acid) fiber: an overview, Prog. Polym. Sci. 32, 455-482. https://doi.org/10.1016/j.progpolymsci.2007.01.005.
https://doi.org/10.1016/j.progpolymsci.2007.01.005
8. L.T. Lim, R. Auras, M. Rubino, (2008) Processing technologies for poly (lactic acid). Prog. Polym. Sci. 33, 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05. 004.
https://doi.org/10.1016/j.progpolymsci.2008.05.004
9. S. Saeidlou, M.A. Huneault, H. Li, C.B. Park, (2012) Poly (lactic acid) crystallization. Prog. Polym. Sci. 37, 1657-1677. https://doi.org/10.1016/j.progpolymsci.2012. 07.005.
https://doi.org/10.1016/j.progpolymsci.2012.07.005
10. R.M. Rasal, A.V. Janorkar, D.E. Hirt, (2010) Poly (lactic acid) modifications. Prog. Polym. Sci. 35, 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003.
https://doi.org/10.1016/j.progpolymsci.2009.12.003
11. J. Dorgan, J. Janzen, M. Clayton, S. Hait, D. Knauss, (2005) Melt rheology of variable L-content poly(lactic acid). J. Rheol. 49, 607-619. https://doi.org/10.1122/1. 1896957.
https://doi.org/10.1122/1.1896957
12. J. Dorgan, J. Williams, (1999) Melt rheology of poly(lactic acid), entanglement and chainarchitecture effects. J. Rheol. 43, 1141-1155. https://doi.org/10.1122/ 1.551041.
https://doi.org/10.1122/1.551041
13. V. E. Levytskyi, A. S. Маsyuk, L. М. Bilyi, T. Bialopiotrowicz, T. V. Humenetskyi & A. М. Shybanova (2020) Influence of Silicate Nucleation Agent Modified with Polyvinylpyrrolidone on the Morphology and Properties of Polypropylene. Materials Science. 55, 555-562.
https://doi.org/10.1007/s11003-020-00338-9
14. Masyuk A.S., Kysilʹ Kh.V.,  Katruk D.S., Skorokhoda V.Y., Bilyy L.M., Humenetsʹkyy T.V. (2020)  Pruzhno-plastychni vlastyvosti polilaktydnykh kompozytiv z dribnodyspersnymy napovnyuvachamy // Fizyko-khimichna mekhanika materialiv. 56, 31-38.
15. Lee Tin Sin Bee Soo Tueen Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. - Oxford:William Andrew, 2019. - 422 p.
16. Maria Laura, Di Lorenzo RenéAndrosch Industrial Applications of Poly(lactic acid). - Cham:Springer, 2018. -228 p.
https://doi.org/10.1007/978-3-319-75459-8
17. Mohammadreza Nofar, Dilara Sacligil, Pierre J. Carreau, Musa R. Kamal, Marie-Claude Heuzey (2019) Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules. 307-360.
https://doi.org/10.1016/j.ijbiomac.2018.12.002
18. Woo Yeul Jang, Boo Young Shin†, Tae Jin Lee, and Ramani Narayan (2007) Thermal Properties and Morphology of Biodegradable PLA/Starch Compatibilized Blends. J. Ind. Eng. Chem. 13, 457-464.
19. Bastioli, C., (2001) Global status of the production of biobased packaging materials. Starch/Starke. 53, 351-355.
https://doi.org/10.1002/1521-379X(200108)53:8<351::AID-STAR351>3.0.CO;2-R
20. Lescher, P., Jayaraman, K., Bhattacharyya, D. (2009) Water-free blending of thermoplastic starch and polyethylene for rotomoulding. Starch/Starke. 61, 43-45.
https://doi.org/10.1002/star.200800041
21. Pyshpadass, H. A., Marx, D. B., Hanna, M. A., (2008) Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch/Starke. 60, 527-538.
https://doi.org/10.1002/star.200800713
22. Mihai, M., Huneault, M. A., Favis, B. D., Li, H., (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol. Biosci. 7, 907-920.
https://doi.org/10.1002/mabi.200700080
23. Wilpiszewska, K., Spychaj, T., (2006) Thermal plasticization of starch by extrusion in the presence of plasticizers. Polimery (Warsaw, Poland) 51, 327-332.
https://doi.org/10.14314/polimery.2006.327
24. Ma, X., Yu, J., (2004) Studies on the properties of formamide plasticized-thermoplastic starch. Acta Polym. Sin. 2, 240-245.
25. Xie, F. W., Yu, L., Liu, H. S., Chen, L., (2006) Starch modification using reactive extrusion. Starch/Starke 58, 131-139.
https://doi.org/10.1002/star.200500407
26. S. Jacobsen, H.G. Fritz, (1996) Filling of poly(lactic acid) with native starch. Polym. Eng. Sci. 36, 2799-2804. https://doi.org/10.1002/pen.10680.
https://doi.org/10.1002/pen.10680
27. D.W. Grijpma, R.D.A. Van Hofslot, H. Supèr, A.J. Nijenhuis, A.J. Pennings, (1994) Rubber toughening of poly(lactide) by blending and block copolymerization, Polym. Eng. Sci. 34, 1674-1684, https://doi.org/10.1002/pen.760342205.
https://doi.org/10.1002/pen.760342205
28. G. Biresaw, C.J. Carriere, (2001) Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends. J. Polym. Phys. Part. B 39, 920-930. https://doi.org/10.1002/polb.1067.abs.
https://doi.org/10.1002/polb.1067.abs
29. E. Blümm, A.J. Owen, (1995) Miscibility, crystallization, and melting of poly(3-hydroxybutyrate)/poly(L-lactide blends). Polymer 36, 4077-4081. https:// doi.org/10.1016/0032-3861(95)90987-D.
https://doi.org/10.1016/0032-3861(95)90987-D
30. Ohkoshia, H. Abeb, Y. Doi, (2000) Miscibility and solid-state structures for blends of poly [(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate], Polymer. 41, 5985-5992. https://doi.org/10.1016/S0032-3861(99)00781-8.
https://doi.org/10.1016/S0032-3861(99)00781-8
31. L. Zhang, C. Xiong, X. Deng, (1996) Miscibility, crystallization, and morphology of poly(β-hydroxybutyrate)/poly(D,L-lactide) blends, Polymer. 37, 235-241, https://doi.org/10.1016/0032-3861(96)81093-7.
https://doi.org/10.1016/0032-3861(96)81093-7
32. A.P. Bonartsev, A.P. Boskhomodgiev, A.L. Iordanskii, G.A. Bonartseva, A.V. Rebrov, T.K. Makhina, V.L. Myshkina, S.A. Yakovlev, E.A. Filatova, E.A. Ivanov, D.V. Bagrov, G.E. Zaikov (2012) Hydrolytic degradation of poly(3-hydroxybutyrate), polylactide and their derivatives: kinetics, crystallinity, and surface morphology. Mol. Cryst. Liq. Cryst. 556, 288-300, https://doi.org/10.1080/ 15421406.2012.635982.
https://doi.org/10.1080/15421406.2012.635982
33.  J. Zhang, H. Sato, T. Furukawa, H. Tsuji, I. Noda, Y. Ozaki (2006) Crystallization behaviors of poly(3-hydroxybutyrate) and poly(L-lactic acid) in their immiscible and miscible blends. J. Phys. Chem. 110, 24463-24471. https://doi.org/10.1021/jp065233c
https://doi.org/10.1021/jp065233c
34. I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jimenez, K. Yoon, j. Ahn, S. Kang, J.M. Kenny (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett. 9,583-596, https://doi.org/10.3144/expresspolymlett.2015.55.
https://doi.org/10.3144/expresspolymlett.2015.55
35. M.A. Woodruff, D.W. Hutmacher, (2010) The return of a forgotten polymer- polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002.
https://doi.org/10.1016/j.progpolymsci.2010.04.002
36. H. Kweon, M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H. Lee, J. Oh, T. Akaike, C. Cho (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 24, 801-808, https://doi.org/10.1016/s0142-9612(02)00370-8.
https://doi.org/10.1016/S0142-9612(02)00370-8
37. K. Fukushima, J.L. Feijoo, M.-C. Yang (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur. Polym. J. 49, 706-717. https://doi.org/10.1016/j.eurpolymj.2012.12.011.
https://doi.org/10.1016/j.eurpolymj.2012.12.011
38. L. Liu, S. Li, H. Garreau, M. Vert, (2000) Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules. 1, 350-359, https://doi.org/10.1021/bm000046k.
https://doi.org/10.1021/bm000046k
39. G. Sivalingam, S.P. Vijayalakshmi, G. Madras (2004) Enzymatic and thermal degradation of poly(ε-caprolactone), poly(d,l-lactide), and their blends. Ind. Eng. Chem. Res. 43, 7702-7709, https://doi.org/10.1021/ie049589r.
https://doi.org/10.1021/ie049589r
40. L.A. Gaona, J.G. Ribelles, J.E. Perilla, M. (2012) Lebourg, Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polym. Degrad. Stab. 97, 1621-1632. https://doi.org/10.1016/j. polymdegradstab.2012.06.031.
https://doi.org/10.1016/j.polymdegradstab.2012.06.031
41. O.J. Botlhoko, J. Ramontja, S.S. Ray (2018) A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends. Polym. Degrad. Stab. 154, 84-95. https://doi. org/10.1016/j.polymdegradstab.2018.05.025.
https://doi.org/10.1016/j.polymdegradstab.2018.05.025
42. L. Gardella, M. Calabrese, O. Monticelli (2012) PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid Polym. Sci. 292, 2391-2398. https://doi.org/10.1007/s00396-014-3328-3.
https://doi.org/10.1007/s00396-014-3328-3
43. L. Jiang, M.P. Wolcott, J. Zhang (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules. 7, 199-207. https:// doi.org/10.1021/bm050581q.
https://doi.org/10.1021/bm050581q
44. M. Nofar, A. Tabatabaei, H. Sojoudiasli, C. Park, P. Carreau, M.-C. Heuzey, et al. (2017) Me-chanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with differ-ent morphologies. Eur. Polym. J. 90, 231-244. https://doi.org/10.1016/j. eurpolymj.2017.03.031.
https://doi.org/10.1016/j.eurpolymj.2017.03.031
45. Y. Deng, C. Yu, P. Wongwiwattana, N.L. Thomas (2018) Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology. J. Polym. Environ. 26, 3802-3816. https://doi.org/10. 1007/s10924-018-1256-x.
https://doi.org/10.1007/s10924-018-1256-x
46. M.-B. Coltelli, I.D. Maggiore, M. Bertoldo, F. Signori, S. Bronco, F. Ciardelli (2008) Poly(lac-tic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. J. Appl. Polym. Sci. 110, 1250-1262. https://doi.org/10.1002/app.28512.
https://doi.org/10.1002/app.28512
47. R. Al-Itry, K. Lamnawar, A. Maazouz, N. Billon, C. (2015) Combeaud, Effect of the simulta-neous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. Eur. Polym. J. 68, 288-301. https://doi.org/ 10.1016/j.eurpolymj.2015.05.001.
https://doi.org/10.1016/j.eurpolymj.2015.05.001
48. L.C. Arruda, M. Magaton, R.E.S. Bretas, M.M. Ueki (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 43, 27-37. https://doi.org/10.1016/j.polymertesting. 2015.02.005.
https://doi.org/10.1016/j.polymertesting.2015.02.005
49. W. Dong, B. Zou, Y. Yan, P. Ma, M. Chen (2013) Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Int. J. Mol. Sci. 14, 20189-20203. https://doi.org/ 10.3390/ijms141020189.
https://doi.org/10.3390/ijms141020189
50. W. Dong, B. Zou, P. Ma, W. Liu, X. Zhou, D. Shi, et al. (2013) Influence of phthalic anhydride and bioxazoline on the mechanical and morphological properties of biodegradable poly(lactic acid)/poly[(butylene adipate)-co-terephthalate] blends. Polym. Int. 62, 1783-1790, https://doi.org/10.1002/pi.4568.
https://doi.org/10.1002/pi.4568
51. N. Zhang, Q. Wang, J. Ren, L. Wang (2008) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 44, 250-256. https://doi.org/10.1007/s10853-008-3049-4.
https://doi.org/10.1007/s10853-008-3049-4
52. M. Nishida, H. Ichihara, H. Watanabe, N. Fukuda, H. Ito (2015) Improvement of dynamic tensile properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) polymer alloys using a crosslinking agent and observation of fracture surfaces. Int. J. Impact Eng. 79, 117-125. https://doi.org/10.1016/j.ijimpeng.2014. 11.010.
https://doi.org/10.1016/j.ijimpeng.2014.11.010
53. N. Zhang, C. Zeng, L. Wang, J. Ren (2012) Preparation and properties of biodegradable poly (lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxy-functional styrene acrylic copolymer as reactive agent. J. Polym. Environ. 21, 286-292. https://doi.org/10.1007/s10924-012-0448-z.
https://doi.org/10.1007/s10924-012-0448-z
54. P. Ma, X. Cai, Y. Zhang, S. Wang, W. Dong, M. Chen, et al. (2014) In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-tere-phthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stab. 102, 145-151. https://doi.org/10.1016/j. polymdegradstab.2014.01.025.
https://doi.org/10.1016/j.polymdegradstab.2014.01.025
55. N. Wu, H. Zhang (2017) Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Mater. Lett. 192, 17-20, https://doi.org/10.1016/j.matlet.2017.01.063.
https://doi.org/10.1016/j.matlet.2017.01.063
56. M. Nofar, A. Maani, H. Sojoudi, M.C. Heuzey, P.J. Carreau (2015) Interfacial and rheo-logical properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow. J. Rheol. 59, 317-333. https://doi.org/10. 1122/1.4905714.
https://doi.org/10.1122/1.4905714
57. M. Nofar, M.C. Heuzey, P.J. Carreau, M.R. Kamal, J. Randall (2016) Coalescence in PLA-PBAT blends under shear flow: effects of blend preparation and PLA molecular weight. J. Rheol. 60, 637-648. https://doi.org/10.1122/1.4953446.
https://doi.org/10.1122/1.4953446
58. H. Xiao, W. Lu, J.-T. Yeh (2009) Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Appl. Polym. Sci. 112, 3754-3763. https://doi.org/10.1002/app.29800.
https://doi.org/10.1002/app.29800
59. B. Wang, X. Zhao, L. Wang (2013) Isothermal crystallization and melting behaviors of bio-degradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification. Polym.-Plast. Technol. Eng. 52, 718-726. https://doi.org/10.1080/03602559.2012.762671.
https://doi.org/10.1080/03602559.2012.762671
60. J.W. Park, S.S. Im (2002) Morphological changes during heating in poly(L-lactic acid)/poly (butylene succinate) blend systems as studied by synchrotron X-ray scattering. J. Polym. Sci. B Polym. Phys. 40, 1931-1939. https://doi.org/10.1002/polb. 10240.
https://doi.org/10.1002/polb.10240
61. J.W. Park, S.S. Im (2002) Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 86, 647-655, https://doi. org/10.1002/app.10923.
https://doi.org/10.1002/app.10923
62. Y. Deng, N. Thomas (2015) Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur. Polym. J. 71, 534-546. https://doi.org/10.1016/j.eurpolymj.2015.08.029
https://doi.org/10.1016/j.eurpolymj.2015.08.029
63. T. Yokohara, M. Yamaguchi (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 44, 677-685. https://doi.org/10. 1016/j.eurpolymj.2008.01.008.
https://doi.org/10.1016/j.eurpolymj.2008.01.008
64. S. Lee, J.W. Lee (2005) Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate). Korea Aust. Rheol J. 17, 71-77. (doi=10.1.1.455.4151&rep=rep1&type=).
65. W. Pivsa-Art, S. Pivsa-Art, K. Fujii, K. Nomura, K. Ishimoto, Y. Aso, et al. (2014) Compression molding and melt-spinning of the blends of poly(lactic acid) and poly(butylene succinate-co-adipate). J. Appl. Polym. Sci. 132. https://doi.org/10.1002/app.41856.
https://doi.org/10.1002/app.41856
66. R. Wang, S. Wang, Y. Zhang (2009) Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J. Appl. Polym. Sci. 113, 3095-3102. https://doi.org/10.1002/app.30333
https://doi.org/10.1002/app.30333
67. H. Eslami, M.R. Kamal (2013) Effect of a chain extender on the rheological and mechanical properties of biodegradable poly(lactic acid)/poly[(butylene succinate)-coadipate] blends. J. Appl. Polym. Sci. 129, 2418-2428. https://doi.org/10.1002/app.38449
https://doi.org/10.1002/app.38449