Synthesis of zinc sulphide-selenide solid solution films. Review

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

A review of the main physical and chemical methods of synthesis of zinc sulfide-selenide (ZnSxSe1–x) thin films was made. The phase diagram of the ZnS–ZnSe system and the regions of existence of different phases within this diagram have been analyzed. The features and parameters of ZnSxSe1–x film synthesis by various methods have been considered. The main characteristics of the obtained films are presented, including crystal structure, thickness, and band gap width, depending on the synthesis method. Special attention is given to chemical bath deposition and its prospects for practical use in obtaining ZnSxSe1–x films.

1. Chuo, H. X., Wang, T. Y., & Zhang, W. G. (2014). Optical properties of ZnSxSe1–x alloy nanostructures and their photodetectors. Journal of Alloys and Compounds, 606, 231–235. https://doi.org/10.1016/j.jallcom.2014.04.004

2. Wu, D., Chang, Y., Lou, Z., Xu, T., Xu, J., Shi, Z., Tian, Y., & Li, X. (2017). Controllable synthesis of ternary ZnSxSe1–x nanowires with tunable band-gaps for optoelectronic applications. Journal of Alloys and Compounds, 708, 623–627. https://doi.org/10.1016/j.jallcom.2017.03.012

3. Zhang, L., Rao, H., Pan, Z., & Zhong, X. (2019). ZnSxSe1–x alloy passivation layer for high-efficiency quantum-dot-sensitized solar cells. ACS Applied Materials & Interfaces, 11(44), 41415–41423. https://doi.org/10.1021/acsami.9b14579

4. Sharma, K. C., & Chang, Y. A. (1996). The S-Zn (sulfur-zinc) system. Journal of Phase Equilibria, 17(3), 261–266. https://doi.org/10.1007/bf02648496

5. Sharma, R. C., & Chang, Y. A. (1996). The Se-Zn (selenium-zinc) system. Journal of Phase Equilibria, 17(2), 155–160. https://doi.org/doi.org/10.1007/bf02665795

6. Tomashyk, V., Feychuk, P., & Shcherbak, L. (2014). Ternary alloys based on II-VI Semiconductor Compounds. CRC Press, Taylor & Francis. https://doi.org/10.1201/b15302

7. Kikuma, I., & Furukoshi, M. (1985). Direct observation of the 3C-2H transformation in ZnSe by high-temperature X-ray diffraction. Journal of Crystal Growth, 71(1), 136–140. https://doi.org/10.1016/0022-0248(85)90053-3

8. Lindsey, Z. R., Rhoades, M. W., Fedorov, V. V., Mirov, S. B., & Camata, R. P. (2017). Pulsed laser deposition of epitaxial ZnSxSe1–x thin films for waveguiding applications in Mid-IR active multilayered structures. MRS Advances, 2(5), 315–321. https://doi.org/10.1557/adv.2017.166

9. Glaudell, R. D., & Atwater, H. A. (2018). Energy band alignment of ZnSxSe1–x films on Si for photovoltaic carrier-selective contacts. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2132–2134. https://doi.org/10.1109/pvsc.2018.8548022

10. Dang, X., Zhang, R., Zhang, P., Kuang, P., Ke, J., Runsheng, Y., Cao, X., & Wang, B. (2022). Study on the structure, composition and optical properties of ZnSxSe1–x thin films prepared by annealing in sulfur and selenium vapor. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4035487

11. Al-Haddad, R. M. S., Hasan, B. A., & Dwech, M. A. (2012). The effect of sulfide content (x) on the electrical properties of (ZnSxSe1–x) thin films. Iraqi Journal of Physics, 10(18), 35–49. Retrieved from https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/744/531

12. Popa, M. (2016). The optical properties of ZnSxSe1–x thin films deposited by the quasi-closed volume technique. Romanian Reports in Physics, 68(4), 1495–1505. Retrieved from https://rrp.nipne.ro/2016_68_4/A12.pdf

13. Popa, M. (2016). Structural and physical properties of ZnSxSe1–x Thin Films. NanoScience and Technology, 115–142. https://doi.org/10.1007/978-3-319-30198-3_4

14. Popa, M., Tiginyanu, I., & Ursaki, V. (2017). Optical constants of ZnSxSe1–x thin films calculated from transmission spectra. Moldavian Journal of the Physical Sciences, 16(1-2), 78–93. Retrieved from https://mjps.utm.md/archive/download/71746

15. Popa, M., Tiginyanu, I., & Ursaki, V. (2017). Mott type electrical conductivity in ZnSxSe1–x thin films. Romanian Journal of Physics, 62(1-2), 602. Retrieved from https://rjp.nipne.ro/2017_62_1-2/RomJPhys.62.602.pdf

16. Ray, S., Barman, B., Darshan, C., Tarafder, K., & Bangera, K. V. (2022). ZnSxSe1–x thin films: A study into its tunable energy band gap property using an experimental and theoretical approach. Solar Energy, 240, 140–146. https://doi.org/doi.org/10.1016/j.solener.2022.05.019

17. Moger, S. N., Sathe, V., & Mahesha, M. G. (2022). Characterization of ZnSxSe1–x films grown by thermal co-evaporation technique for photodetector applications. Surfaces and Interfaces, 30, 101852. https://doi.org/10.1016/j.surfin.2022.101852

18. Kumar, V., Sharma, D. K., Sharma, K., & Dwivedi, D. K. (2014). Growth and characterization of screen-printed zinc sulpho selenide composite thin layer for solar cell buffer layer application. Environmental Science and Engineering, 885–888. https://doi.org/10.1007/978-3-319-03002-9_228

19. Alghamdi, Y. (2017). Composition and band gap controlled AACVD of ZnSe and ZnSxSe1–x thin films using novel single source precursors. Materials Sciences and Applications, 08(10), 726–737. https://doi.org/10.4236/msa.2017.810052

20. Dhanemozhi, C., John, R., & Murali, K. R. (2011). Characteristics of brush electrodeposited ZnSxSe1–x films. ECS Meeting Abstracts, MA2011-01(26), 1539–1539. https://doi.org/10.1149/ma2011-01/26/1539

21. Dhanemozhi, C., John, R., & Murali, K. R. (2017). Synthesis and characterization of ZnSxSe1–x films using brush plating technique. Materials Today: Proceedings, 4(4), 5185–5189. https://doi.org/10.1016/j.matpr.2017.05.025

22. Fridjine, S., Touihri, S., Boubaker, K., & Amlouk, M. (2010). Some physical investigations on ZnSxSe1–x films obtained by selenization of ZnS sprayed films using the Boubaker polynomials expansion scheme. Journal of Crystal Growth, 312(2), 202–208. https://doi.org/10.1016/j.jcrysgro.2009.10.039

23. Patil, N. M., Nilange, S. G., & Yadav, A. A. (2018). Growth and characterization of ZnSxSe1–x thin films deposited by spray pyrolysis. Thin Solid Films, 664, 19–26. https://doi.org/10.1016/j.tsf.2018.08.018

24. Patil, N. M., Nilange, S. G., & Yadav, A. A. (2019). Properties of spray deposited ZnSxSe1–x thin films for photoelectrochemical solar cell application. Journal of Materials Science: Materials in Electronics, 30(2), 1647–1653. https://doi.org/10.1007/s10854-018-0435-9

25. Krishna, G. V. S., & Mahesha, M. G. (2020). Characterization of spray deposited ternary ZnSxSe(1–x) thin films for solar cell buffers. Surfaces and Interfaces, 20, 100509. https://doi.org/10.1016/j.surfin.2020.100509

26. Krishna, G. V. S., & Mahesha, M. G. (2021). XPS analysis of ZnS0.4Se0.6 thin films deposited by spray pyrolysis technique. Journal of Electron Spectroscopy and Related Phenomena, 249, 147072. https://doi.org/10.1016/j.elspec.2021.147072

27. Agawane, G. L., Shin, S. W., Vanalakar, S. A., Moholkar, A. V., Gurav, K. V., Suryawanshi, M. P., Lee, J. Y., Yun, J. H., & Kim, J. H. (2014). Non-toxic novel route synthesis and characterization of nanocrystalline ZnSxSe1–x thin films with tunable band Gap Characteristics. Materials Research Bulletin, 55, 106–113. https://doi.org/10.1016/j.materresbull.2014.04.002

28. Hile, D. D., Swart, H. C., Motloung, S. V., Motaung, T. E., Ahemen, I., Jubu, P. R., Essien, K. E., & Koao, L. F. (2024). Investigating the effects of varying sulfur concentration on ZnSxSe1–x (0 ≤ x ≤ 1.0) thin films prepared by photo-assisted chemical bath method. Results in Optics, 14, 100613. https://doi.org/10.1016/j.rio.2024.100613

29. Mir, T. A., Patil, D. S., & Sonawane, B. K. (2022). Influence of sulfur incorporation on the structural, optical and electrical properties of chemically deposited ZnSe thin films. Journal of Nano- and Electronic Physics, 14(2). https://doi.org/10.21272/jnep.14(2).02014

30. Boruah, M., Adhyapak, S., Das, A. K., Pathok, H. S., Mostako, A. T. T., & Saikia, P. K. (2025). Low-temperature synthesis and characterization of chemically deposited pH-varied nanocrystalline ZnSSe thin films for application in photovoltaics. Optical Materials, 159, 116621. https://doi.org/10.1016/j.optmat.2024.116621

31. Sadekar, H. K., Ghule, A. V., & Sharma, R. (2011). Bandgap engineering by substitution of S by SE in nanostructured ZnS1–xSex thin films grown by soft chemical route for nontoxic Optoelectronic Device Applications. Journal of Alloys and Compounds, 509(18), 5525–5531. https://doi.org/doi.org/10.1016/j.jallcom.2011.02.089

32. Sadekar, H. K. (2021). Nanostructurred ZnS1–xSex (x = 0.4) thin film prepared by chemical bath deposition for solar cell applications. Journal of Scientific Research, 65(07), 55–57. https://doi.org/10.37398/jsr.2021.650712

33. Sozanskyi, M. A., Guminilovych, R. R., Stadnik, V. Ye., Klapchuk, O. V., & Shapoval, P. Yo. (2024). Mathematical calculation of the boundary conditions for zinc sulfide-selenide formation in the hydroxide-hydrazine-thiourea-selenium system. Chemistry, Technology and Application of Substances, 7(2), 7–13. https://doi.org/10.23939/ctas2024.02.007

34. Sozanskyi, M. A., Huminilovych, R. R., Stadnik, V. Ye., Klapchuk, O. V., & Shapoval, P. Yo. (2024). Chemical synthesis of ZnSxSe1–x solid solution films from aqueous solutions containing sodium hydroxide. Journal of Nano- and Electronic Physics, 16(6). https://doi.org/10.21272/jnep.16(6).06014