MERCURY–CADMIUM SULFIDE FILMS: CALCULATION OF CRITICAL CONDITIONS OF CHEMICAL DEPOSITION

2025;
: 9-16
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Based on thermodynamic constants, the concentration limits of the initial mercury and cadmium-containing salts and the pH range at which depositions of HgS and CdS are possible without the formation of HgO and Cd(OH)2 were calculated. The limits of the formation conditions of the Hg1–xCdxS solid solution in the thiosulfate-citrate-carbonate-thiourea system were defined by the overlap area between the constructed HgS and CdS deposition zones. Samples of the Hg1–xCdxS films were deposited within the calculated area of their formation, which was confirmed by X-ray diffraction and elemental analysis. 

1. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved from https://doi.org/10.18434/M32154

2. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69–76. Retrieved from https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf

3. Zheng, Z., Zhang, M., Xiao, Y., Wei, L., & Li, C. (2017). Effect of CYS, GSH, and pH on Mercury release from Tibetan medicine Zuotai, β-HgS, and α-HgS in artificial gastrointestinal juices. Biological Trace Element Research, 184, 536–545. https://doi.org/10.1007/s12011-017-1185-x

4. Zhao, Q., Tang, Z., Pan, Y., Han, J., Yang, J., Guo, Y., Lai, X., Yang, Z., & Li, G. (2023). The Ksp gap enabled precipitation transformation reactions from transition metal hydroxides to sulfides for alkali metal ion storage. Inorganic Chemistry Frontiers, 10(11), 3406–3414. https://doi.org/10.1039/d3qi00324h

5. Ayala-Parra, P., Sierra-Alvarez, R., & Field, J. A. (2016). Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-Valent Iron. Journal of Hazardous Materials, 308, 97–105. https://doi.org/10.1016/j.jhazmat.2016.01.029

6. Haynes, W. M. (Ed.) (2016) CRC Handbook of Chemistry and Physics (97th ed.). CRC Press, Taylor & Francis Group. DOI: 10.1201/9781315380476

7. Sozanskyi, M. A., Guminilovych, R. R., Stadnik, V. Ye., Klapchuk, O. V., & Shapoval, P. Yo. (2024). Mathematical calculation of the boundary conditions for zinc sulfide-selenide formation in the hydroxide-hydrazine-thiourea-selenium system. Chemistry, Technology and Application of Substances, 7(2), 7–13. https://doi.org/10.23939/ctas2024.02.007

8. Cameron, W. (2010). Cyanamides. Kirk-Othmer Encyclopedia of Chemical Technology, 1–15. https://doi.org/10.1002/0471238961.0325011416012005.a01.pub3

9. García-Valenzuela, J. A. (2016). Simple thiourea hydrolysis or intermediate complex mechanism? taking up the formation of metal sulfides from metal–thiourea alkaline solutions. Comments on Inorganic Chemistry, 37(2), 99–115. https://doi.org/10.1080/02603594.2016.1230547

10. Kraus, W., & Nolze, G. (1996). Powder cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301–303. https://doi.org/10.1107/s0021889895014920

11. Alzoubi, N. S. A.-A., & Alhassan, Z. (2020). Study of the effect of different dopants on optical properties of ZnS thin films. International Journal of Engineering Research & Technology (IJERT), 9(2), 571–575. https://doi.org/10.17577/IJERTV9IS020271

12. Sabat, S., Gartia, A., Sahoo, K. K., Biswal, S. R., Pradhan, D., & Kar, J. P. (2024). Enhancement of carrier concentration in chemical bath deposited copper sulfide (CuxS) thin film by post-growth annealing treatment. Engineering Research Express, 6(4), 045320. https://doi.org/10.1088/2631-8695/ad79b7

13. Kale, S. S., Pathan, H. M., & Lokhande, C. D. (2005). Thickness dependent photoelectrochemical cells performance of CdSe and HgS thin films. Journal of Materials Science, 40(9–10), 2635–2637. https://doi.org/10.1007/s10853-005-2093-6

14. Najdoski, M. Z., Grozdanov, I. S., Dey, S., wip K., & Siracevska, B. B. (1998). Chemical bath deposition of mercury(ii) sulfide thin layers. Journal of Materials Chemistry, 8(10), 2213–2215. https://doi.org/10.1039/a802347f

15. Ortuño-López, M. B., Ochoa-Landín, R., Sandoval-Paz, M. G., Sotelo-Lerma, M., Flores-Acosta, M., & Ramírez-Bon, R. (2013). Studies on the properties of cds films deposited from PH-controlled growth solutions. Materials Research, 16(4), 937–943. https://doi.org/10.1590/s1516-14392013005000103

16. Ouachtari, F., Rmili, A., Elidrissi, B., Bouaoud, A., Erguig, H., & Elies, P. (2011). Influence of bath temperature, deposition time and S/CD ratio on the structure, surface morphology, chemical composition and optical properties of CdS thin films elaborated by Chemical Bath Deposition. Journal of Modern Physics, 02(09), 1073–1082. https://doi.org/10.4236/jmp.2011.29131

17. Sozanskyi, M. A., Stadnik, V. Ye., Guminilovych, R. R., Siryk, K. M., & Shapoval, P. Yo. (2024). Сhemical synthesis of solid solutions of mercury sulfide-selenide films in the presence of sodium tartrate. Chemistry, Technology and Application of Substances, 7(1), 21–26. https://doi.org/10.23939/ctas2024.01.021