Вiodegradable porous composites based on polyhydroxybutyrate for biomedicine and bioengineering

2025;
: 110-116
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

Porous osteoplastic composites using polyhydroxybutyrate as a binder and hydroxyapatite (HA) as a reinforcing component were obtained by press molding. To evaluate the effect of HA particles on the structure and properties of the composites, the amount of filler was varied from 0 to 50 wt%. %. It was found that the addition of HA to the polymer matrix causes a decrease in the mechanical strength of the resulting composites due to the formation of discontinuities in the matrix caused by poor interaction between the matrix and filler particles. An increase in the amount of HA contributed to the formation of a porous composite similar to bone tissue, thereby enhancing its bioactivity. 

1. Ansari, S., Sami, N., Yasin, D., Ahmad, N., Fatma, T. (2021). Biomedical applications of environmental friendly poly-hydroxyalkanoates. International Journal of Biological Macromolecules, 183, 549–563. https://doi.org/10.1016/j.ijbiomac.2021.04.171

2. Semeniuk, I. V., Kocubei, V. V., Skorokhoda, V. Y., Melnyk, Y. Y., Semenyuk, N. B., Koretska, N. I., & Pokynbroda, T. Y. (2022). Temperature and physical-mechanical properties of thermoplastic materials based on polyhydroxybutyrate. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 80–87. https://doi.org/10.32434/0321-4095-2022-145-6-80-87

3. Semeniuk, I., Kochubei, V., Karpenko, E., Melnyk, Y., Skorokhoda, V., & Semenyuk, N. (2023). Thermal and physico-mechanical properties of biodegradable materials based on polyhydroxyalkanoates. Polimery, 67(11–12), 561–566. https://doi.org/10.14314/polimery.2022.11.3

4. Chen, Y., Hung, S.-T., Chou, E., Wu, H.-S. (2018). Review of Polyhydroxyalkanoates Materials and other Biopolymers for Medical Applications. Mini-Reviews in Organic Chemistry, 15(2), 105–121. https://doi.org/10.2174/1570193X14666170721153036

5. Raza, Z. A., Noor, S., Khalil, S. (2019). Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnology Progress, 35(5). Https://doi.org/10.1002/btpr.2855

6. Degli Esposti, M., Chiellini, F., Bondioli, F., Morselli, D., Fabbri, P. (2019). Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Materials Science and Engineering: C, 100, 286–296. https://doi.org/10.1016/j.msec.2019.03.014

7. Goswami, M., Rekhi, P., Debnath, M., Ramakrishna, S. (2021). Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules, 26(4), 860. https://doi.org/10.3390/molecules26040860

8. Ielo, I., Calabrese, G., de Luca, G., Conoci, S. (2022). Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. International Journal of Molecular Sciences, 23(17), 9721. https://doi.org/10.3390/ijms23179721

9. Giubilini, A., Bondioli, F., Messori, M., Nyström, G., Siqueira, G. (2021). Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering, 8(2), 29. https://doi.org/10.3390/bioengineering8020029

10. Pulingam, T., Appaturi, J. N., Parumasivam, T., Ahmad, A., & Sudesh, K. (2022). Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers, 14(11), 2141. https://doi.org/10.3390/polym14112141

11. Kalia, V. C., Patel, S. K. S., Lee, J.-K. (2023). Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers, 15(8), 1937. https://doi.org/10.3390/polym15081937

12. Ivanukh, O. O., Semenyuk, I. V., Safonova, Ye. P., Peretiatko, T. B., Melnyk, Yu. Ya., Skorokhoda, V. Y. Doslidzhennia biodehradatsii polihydroksybutyratu, polilaktydu i yikh sumishi pid diieiu mikroorhanizmiv metodom renthenivskoho dyfraktsiinoho analizu (2025). Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 8(1). https://doi.org/10.23939.ctas2025.01