Porous osteoplastic composites using polyhydroxybutyrate as a binder and hydroxyapatite (HA) as a reinforcing component were obtained by press molding. To evaluate the effect of HA particles on the structure and properties of the composites, the amount of filler was varied from 0 to 50 wt%. %. It was found that the addition of HA to the polymer matrix causes a decrease in the mechanical strength of the resulting composites due to the formation of discontinuities in the matrix caused by poor interaction between the matrix and filler particles. An increase in the amount of HA contributed to the formation of a porous composite similar to bone tissue, thereby enhancing its bioactivity.
1. Ansari, S., Sami, N., Yasin, D., Ahmad, N., Fatma, T. (2021). Biomedical applications of environmental friendly poly-hydroxyalkanoates. International Journal of Biological Macromolecules, 183, 549-563. https://doi.org/10.1016/j.ijbiomac.2021.04.171
https://doi.org/10.1016/j.ijbiomac.2021.04.171
2. Semeniuk, I. V., Kocubei, V. V., Skorokhoda, V. Y., Melnyk, Y. Y., Semenyuk, N. B., Koretska, N. I., & Pokynbroda, T. Y. (2022). Temperature and physical-mechanical properties of thermoplastic materials based on polyhydroxybutyrate. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 80-87. https://doi.org/10.32434/0321-4095-2022-145-6-80-87
https://doi.org/10.32434/0321-4095-2022-145-6-80-87
3. Semeniuk, I., Kochubei, V., Karpenko, E., Melnyk, Y., Skorokhoda, V., & Semenyuk, N. (2023). Thermal and physico-mechanical properties of biodegradable materials based on polyhydroxyalkanoates. Polimery, 67(11-12), 561-566. https://doi.org/10.14314/polimery.2022.11.3
https://doi.org/10.14314/polimery.2022.11.3
4. Chen, Y., Hung, S.-T., Chou, E., Wu, H.-S. (2018). Review of Polyhydroxyalkanoates Materials and other Biopolymers for Medical Applications. Mini-Reviews in Organic Chemistry, 15(2), 105-121. https://doi.org/10.2174/1570193X14666170721153036
https://doi.org/10.2174/1570193X14666170721153036
5. Raza, Z. A., Noor, S., Khalil, S. (2019). Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnology Progress, 35(5). Https://doi.org/10.1002/btpr.2855
https://doi.org/10.1002/btpr.2855
6. Degli Esposti, M., Chiellini, F., Bondioli, F., Morselli, D., Fabbri, P. (2019). Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Materials Science and Engineering: C, 100, 286-296. https://doi.org/10.1016/j.msec.2019.03.014
https://doi.org/10.1016/j.msec.2019.03.014
7. Goswami, M., Rekhi, P., Debnath, M., Ramakrishna, S. (2021). Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules, 26(4), 860. https://doi.org/10.3390/molecules26040860
https://doi.org/10.3390/molecules26040860
8. Ielo, I., Calabrese, G., de Luca, G., Conoci, S. (2022). Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. International Journal of Molecular Sciences, 23(17), 9721. https://doi.org/10.3390/ijms23179721
https://doi.org/10.3390/ijms23179721
9. Giubilini, A., Bondioli, F., Messori, M., Nyström, G., Siqueira, G. (2021). Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering, 8(2), 29. https://doi.org/10.3390/bioengineering8020029
https://doi.org/10.3390/bioengineering8020029
10. Pulingam, T., Appaturi, J. N., Parumasivam, T., Ahmad, A., & Sudesh, K. (2022). Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers, 14(11), 2141. https://doi.org/10.3390/polym14112141
https://doi.org/10.3390/polym14112141
11. Kalia, V. C., Patel, S. K. S., Lee, J.-K. (2023). Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers, 15(8), 1937. https://doi.org/10.3390/polym15081937
https://doi.org/10.3390/polym15081937
12. Ivanukh, O. O., Semenyuk, I. V., Safonova, Ye. P., Peretiatko, T. B., Melnyk, Yu. Ya., Skorokhoda, V. Y. Doslidzhennia biodehradatsii polihydroksybutyratu, polilaktydu i yikh sumishi pid diieiu mikroorhanizmiv metodom renthenivskoho dyfraktsiinoho analizu (2025). Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 8(1). https://doi.org/10.23939.ctas2025.01