MODIFIED FENTON METHOD AS AN EFFECTIVE TECHNOLOGY FOR FINISHING FILTRATES AT THE SECOND STAGE OF COMPREHENSIVE TECHNOLOGY

1
Lviv Polytechnic National University
2
Ivan Franko National University of Lviv
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Stepan Gzhytskyi Lviv National University of Veterinary Medicine and Biotechnologies
6
Zhytomyr Polytechnic State University
7
Lviv Polytechnic National University
8
Maria Curie Sklodowska University
9
Lviv Polytechnic National University

The paper investigates the effectiveness of the modified Fenton method for secondary treatment of solid waste landfill leachates after preliminary treatment using the aerated lagoon method. The study was conducted in laboratory and semi-industrial conditions.Based on the obtained results of reagent purification of filtrates in laboratory conditions, the optimal doses of working solutions of reagents (polyacrylamide, aluminum and iron sulfates, hydrogen peroxide) were established.The results obtained in laboratory conditions were tested and refined during field studies on a prototype of a filtrate pretreatment unit.

1. Alakhras, F., Alghamdi, H., & Rehman, R. (2023). Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions. Chemistry & Chemical Technology, 17(2), 407–419. doi: https://doi.org/10.23939/chcht17.02.407

2. Bashir, M. J. K., Lim, J. W., & Aziz, H. A. (2019). Review on Landfill Leachate Treatments: From Conventional to Integrated Processes. Environmental Science and Pollution Research, 26(1), 1–18. doi: https://doi.org/10.1007/s11356-019-06239-2.

3. Choi, J., Lee, S., & Lee, J. W. (2021). Integrated MBR–RO system for effective landfill leachate treatment in South Korea. Water Research, 196, 116989. doi: https://doi.org/10.1016/j.watres.2021.116989.

4. Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2011). Ozonation as pre-treatment for landfill leachate biodegradation. Science of the Total Environment, 409(10), 2152–2157. doi: https://doi.org/10.1016/j.scitotenv.2011.02.034.

5. De Morais, F. C., & Zamora, P. P. (2023). Advanced oxidation processes for refractory organic compounds in landfill leachate: A review. Frontiers in Environmental Science, 12, 1439128. doi: https://doi.org/10.3389/fenvs.2024.1439128.

6. Fritz Water Engineering. (2023). Treatment of Landfill Leachate: Technologies and Solutions. Retrieved from https://fritzenergy.com/treatment-of-landfill-leachate/.

7. Gao, N., Li, J., & Wang, P. (2018). Treatment of landfill leachate by electrocoagulation using aluminum and iron electrodes. Desalination and Water Treatment, 128, 172–178. doi: https://doi.org/10.5004/dwt.2018.22550.

8. Jegadeesan, G. B., & Prabakaran, P. (2022). Fenton and Photo-Fenton Processes for Leachate Treatment: Comparative Study and Process Optimization. Environmental Technology & Innovation, 27, 102465. doi: https://doi.org/10.1016/j.eti.2022.102465

9. Kosogina, I., Astrelin, I., Krimets, G., & Vereshchuk, N. (2014).The Process of Wastewater Treatment with Advanced Oxidation Methods to Remove Dye. Chemistry & Chemical Technology, 8(3), 365–369. doi: https://doi.org/10.23939/chcht08.03.365

10. Li, X., Gao, F., & Song, J. (2021). Electrochemical oxidation for treatment of landfill leachate: A review. Chemosphere, 276, 130218. doi: https://doi.org/10.1016/j.chemosphere.2021.130218.

11. Lenntech. (2022). Advanced landfill leachate treatment using an integrated membrane process. Retrieved from https://www.lenntech.com/abstracts/906/advanced-landfill-leachate-treatment-using-an-integrated-membrane-process.html/

12. Malovanyy, M., Zhuk, V., Sliusar, V., & Sereda, A. (2018). Two stage treatment of solid waste leachates in aerated lagoons and at municipal wastewater treatment plants. Eastern-European Journal of Enterprise Technologies, 1(10), 23-30. doi: https://doi.org/10.15587/1729-4061.2018.122425

13. Malovanyy, M., Zhuk, V., Boichyshyn, L., Tymchuk, І., Vronska, N., & Grechanik, R. (2022). Integrated Aerobic-Reagent Technology for the Pre-Treatment of Leachates from Municipal Solid Waste Landfills. Ecological Engineering & Environmental Technology, 23(1), 135-141. doi: https://doi.org/10.12912/27197050/143004.

14. Malovanyy, M., Moroz, O., Popovich, V., Kopiy, M., Tymchuk, I., Sereda, A., Krusir, G., & Soloviy, Ch. (2021).  The perspective of using the «open biological conveyor» method for purifying landfill filtrates.  Environmental Nanotechnology, Monitoring & Management, 16(2021), 100611. doi: https://doi.org/10.1016/j.enmm.2021.100611.

15. Malovanyy, M., Zhuk, V., Tymchuk, I., Grechanik, R., Sliusar, V., Vronska, N., Marakhovska, A., & Sereda, A. (2023). Pilot-Scale Modelling of Aerated Lagoon Technology for the Treatment of Landfill Leachate: Case Study Hrybovychi Plant. Environment and Natural Resources Journal, 21(1), 1–8. doi: http://doi.org/10.32526/ennrj/21/202200103.

16. Malovanyy, M., Boychyshyn, L., Zhuk, V., Horbach, V., Reshetnyak, O., Sereda, A., & Slyusar, V. (2018).  Two-stage aerobic-reagent technology for landfill infiltration treatment. Sustainable development - state and prospects: Proceedings of the International Scientific Symposium SDEV‘2018 (February 28–March 3, 2018, Lviv-Slavske, Ukraine, рр. 147−149.

17. Melnykov, A., Miroshnichenko, D., Karnozhytskyi, P. P., Karnozhytskyi, P. V. (2024). Sorption Properties of Brown Coal Processing Product. Chemistry & Chemical Technology, 18(4), 493–501. doi: https://doi.org/10.23939/chcht18.04.493

18. Methodology for photometric determination of ammonium ions with Nessler reagent in wastewater, KND 211.1.4.030-95 (1995).

19 Methodology for determining biochemical oxygen demand after n days (BOD) in natural and wastewater, KND 211.1.4.024-95 (1995).

20. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. doi: https://doi.org/10.1016/j.jhazmat.2007.09.077

21. Rules for accepting wastewater into centralized wastewater systems. Order of the Ministry of Regional Development, Construction: Housing and Communal Services of Ukraine 2017, № 316 (2017).

22. Saranya, R., & Muthukumar, K. (2014). Electrochemical oxidation of landfill leachate using a three-dimensional electrode reactor. Environmental Science and Pollution Research, 21(3), 2157–2167. doi: https://doi.org/10.1007/s11356-013-2068-9.

23. Sarker, M., & Harada, H. (2019). Biological treatment of landfill leachate: Current practices and future directions. Water Science and Technology, 80(5), 819–838. doi: https://doi.org/10.2166/wst.2019.313.

24. Singh, P., & Prakash, S. (2022). Supercritical water oxidation (SCWO) for PFAS destruction and leachate management. Journal of Environmental Management, 306, 114387. doi: https://doi.org/10.1016/j.jenvman.2022.114387.

25. Sukhatskiy, Y., Znak, Z., Sozanskyi, M., Shepida, M., Gogate, P. R., & Tsymbaliuk, V.  (2024). Activated Periodates and Sodium Percarbonate in Advanced Oxidation Processes of Organic Pollutants in Aqueous Media: A Review. Chemistry & Chemical Technology, 18(2), 119–130. doi: https://doi.org/10.23939/chcht18.02.119

26. Sun, Y., Li, Y., & Li, M. (2020). Membrane distillation of landfill leachate: A review on performance, fouling, and energy consumption. Separation and Purification Technology, 236, 116283. doi: https://doi.org/10.1016/j.seppur.2019.116283.

27. Wang, Z., & Zhang, Y. (2016). Landfill leachate treatment by advanced oxidation processes: Current status and future perspectives. Waste Management, 56, 131–147. doi: https://doi.org/10.1016/j.wasman.2016.06.045.

28. Water quality. Determination of chemical oxygen demand (ISO 6060:1989, IDT), DSTU ISO 6060:2003 (2004). .

29. Uthman, H., & Nyakuma, B. (2018). Comparative Study of Moringa Oleifera and Citrus Paradisi as Disinfectants and Coagulants for Water Treatment. Chemistry & Chemical Technology, 12(4), 492–499. doi: https://doi.org/10.23939/chcht12.04.492