Analytical and numerical methods for calculation the deep of penetration the welding seam formed by the electron beam generated by glow discarge electron guns

2021;
: 112-119
1
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
2
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
3
Private Actioner Society, Scientific and Industrial Association “Chervona Hvylia”

The article is devoted to the problem of defining the focal diameter of electron beam, formed by the
glow discharge electron guns, as well as the necessary pressure in the gun chamber for realising the
welding process. Taking into account, that glow discharge electron guns are widely used in industry
for welding of different metals, and that for providing the high quality of welding joints estimation
of energetic parameters in beam focus is very important, proposed methods are very important for
effective elaboration and designing of the novel glow discharge electron guns constructions for
specific technological operations. With known focal beam deameter and thermodinamic parameters
of welding details material the deep of penetration of welding seam, as well as the necessary
pressure in discharge chamber have been estimatied. Two proposed methods are generally based on
the analytical solving of explite equation and on numeracal solving of sophisticated non-linear
equation. Obtained simulation results with and without taking into account the spsace charge of own
beam electrons are also given.

  1. Denbnovetskiy, S., Melnyk, V., Melnyk I., Tugai, B., Tuhai, S., Wojcik, W., Lawicki, T., Assambay, A., Luganskaya, S. (2017). “Principles of operation of high voltage glow discharge electron guns and particularities of its technological application”, Proceedings of SPIE, The International Society of Optical Engineering. Pp. 10445–10455.
  2. Melnyk, I., Tyhai, S. and Pochynok, A. (2021). “Universal complex model for estimation the beam current density of high voltage glow discharge electron guns”, Lecture Notes in Networks and Systems: manual book, 152, Edited by Ilchenko M. Yu. Springer. Pp. 319–341.
  3. “Электронно-лучевая сварка” (1987). Под общей ред. Патона Б. Е. Киев: Наукова думка. 256 с.
  4. Самарский А. А., Гулин А. В. (1989). Численные методы: учеб. пособие для вузов, Москва: Наука. 432 с.
  5. Рыкалин Н. Н., Зуев И. В., Углов А. А. (1978). Основы электронно-лучевой обработки материалов. М.: Машиностроение. 239 с.
  6. Hablanian M. H. (1962). “A correlation of welding variables”, Proceedings of IV Symposium of Electron Beam Technologies, Bosotn, рp. 262–268.
  7. Лопатко В. А., Карташов Г. В., Ткачев Л. Г. (1977). Определение глубины проплавления при электронно-лучевой сварке металлов большой толщин”, V Всесоюзная конференция по электронно- лучевой сварке. К.: Наукова думка, С. 16–19.
  8. Молоковский С. И., Сушков Д. И. (1991). Интенсивные электронные и ионные пучки. М.: Энергоатомиздат. 304 с.
  9. Силадьи М. (1990). Электронная и ионная оптика. М.: Мир. 640 с.
  10. Новиков А. А. (1983). Источники электронов высоковольтного тлеющего разряда с анодной плазмой. М.: Энергоатомиздат, 1983. 96 с.
  11. Кухлинг Х. (1982). Справочник по физике: пер с нем. М.: Мир. 520 с.
  12. Эспе В. (1969). Технология электровакуумных материалов. В 3-х томах. М.: Энергия.