EVALUATION OF LOW TEMPERATURE PARAMETERS OF EXCHANGE INTERACTION OF POLYCRYSTALLINE LAYERS IN SOI STRUCTURES

2021;
: 131-140
https://doi.org/10.23939/ictee2021.02.131
Received: December 23, 2021
1
Lviv Polytechnik National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
5
Lviv Polytechnic National University

The article is devoted to the study of the peculiarities of charge carrier transfer in polycrystalline films in SOI structures doped with boron to concentrations corresponding to the metal-insulator transition. The magnetoresistance of polysilicon in SOI structures under the action of magnetic fields up to 14 T at temperatures of 4.2 K was studied. A detailed analysis of magnetic transport properties in poly-Si was performed. It was established that at low-temperature transport of charge carriers in polycrystalline films there is a hopping conductivity, the parameters of which can be estimated by strong spin-orbit interaction within the framework of the theory of weak localization

[1] Lutfi Yola M., Atar N. (2014), “A novel voltammetric sensor based on gold nanoparticles involved in paminothiophenol functionalized multi-walled carbon nanotubes: Application to the simultaneous determination
of quercetin and rutin”, Electrochem. Acta., Vol. 119, pp. 24–31.
[2] Moutanabbir O., Reiche M., Hahnel A. et al. (2007), “Nanoscale patterning induced strain redistribution in ultrathin strained Si layers on oxide”, “Nanotechnology” Vol. 21, 2010, p. 13403.
[3] Sicard E., Delmas Bendhia S. Advanced CMOS cell design. McGraw-Hill, New-York. P. 383.
[4] Druzhinin A., Holota V., Kogut I., Sapon S., Khoverko Yu. (2008), “The Device-Technological Simulation of The Field-Emission Micro-Cathods Based on Three-Demensional SOI-Structures”, ECS Transactions, Vol. 14, No.
1, pp. 569–580.
[5] Holota V. , Kogut I., Druzhinin A., Khoverko Y. (2014), “High sensitive active MOS photodetector on the local 3D SOI-structure”, Advanced Materials Research, Vol. 854, pр. 45–47.
[6] Anc M. J., Dolan R. P., Jiao J., and Nakai T., “Thin-Layer SIMOX for Future Applications”, Proc. 1999 IEEE International SOI Conference, pp. 106–107.
[7] Barsoukov E. and Macdonald J. R. (2005), Impedance Spectroscopy: Theory, Experiment and Applications (Wiley), New York, p. 606.
[8] Grygorchak I. I. and Ponedilok G. V. (2011), Impedance Spectroscopy, Publishing House of Lviv PolytechnicNational University, Lviv, 352 p. (in Ukrainian)
[9] Ritz E., Dressel M. (2008) “Influence of electronic correlations on the frequency-dependent hopping transport in Si:P”, Phys. Status Solidi C 5, p. 703.
[10] Pollak М., Geballe T. H. (1961), “Low-Frequency Conductivity Due to Hopping Processes in Silicon”, Phys. Rev., Vol. 122, p. 1742.
[11] Celler G. K., Cristoloveanu S. (2003), “Frontiers of silicon-on-insulator”, J. of Applied Physics, Vol. 93, No. 9,pp. 4955–4978.
[12] Druzhinin A., Ostrovskii I., Khoverko Y., Rogacki K., Kogut I., Holota V. (2018), “Nanoscale polysilicon in sensors of physical values at cryogenic temperatures”, Journal of Material Science: Materials in Electronics,
Vol. 29(10), pp. 8364–8370.
[13] Druzhinin A., Khoverko Y., Kogut I., Koretskii R. (2014), “Properties of low-dimentional polysilicon in SOI structures for low temperature sensors”, Advanced Materials Research, Vol. 854, pр. 49–55.
[14] Druzhinin A., Maryamova I., Kogut I., Khoverko Y. (2011), “Polysilicon on insulator structures for sensor application at electron irradiation & magnetic fields”, Advanced Materials Research, Vol. 276, рp. 109–116.
[15] Nazarov A. N., Barchuk I. P., Lysenko V. S., Colinge J.-P. (1999), “Association of high-temperature kink-effect in SIMOX SOI fully depleted n-MOSFET with bias temperature instability of buried oxide”, Microelectronic
Engineering, 48(1–4), pp. 379–382.
[16] Druzhinin A., Ostrovskii I., Kogut I., Khoverko Y., Koretskii R., Kogut Iu. (2015), “Magneto-transport properties of polysilicon in SOI structures at low temperatures”, Materials Science in Semiconductor Processing, Vol. 31,
pp. 19–26.
[17] Druzhinin A., Lavitska E., Maryamova I., Khoverko Y. (2002), “Laser recrystallized SOI layers for sensor applications at cryogenic temperatures” Progress in SOI structures and Devices Operating at Extreme
Conditions. Kluwer Acad. Publishers. Printed in the Netherlands, рр. 233–23.
[18] Givargizov Е. I. (1988), Simulated epitaxy is a promising technology for the element base of microelectronics. М.: Nauka, 177 p. (in Russian)
[19] Druzhinin А., Ostrovskii I., Khoverko Yu., Nichkalo S., Kogut Iu. (2014) , “Impedance spectroscopy of polysilicon in SOI structures,” Physica Status Solidi (C) Vol.11, No. 1, рp. 156–159.
[20] Altshuler B. L., Aronov A. G., Larkin A. I., Hmelnickii D. E. (1981), “Anomal on magnetoresistance in semiconductors”, JETF, 81, Vol. 2 (8), pp. 768–783.
[21] Druzhinin A., Ostrovskii I., Khoverko Y., Rogacki K. (2019), “Rashba interaction in polysilicon layers SemOIstructures”, Journal of Electronic Materials, Vol. 48(8), рр. 4934–4938.
[22] Hikami S., Larkin A., and Nagaoka Y. (1980), Prog. Theor. Phys. 63, 707.
[23] Bykanov D. D., Novikov S. V., Polyanskaya T. A., Savel’ev I. G. (2002), “Weak antilocalization and spin-orbit interaction in a In0.53Ga0.47As/InP quantum well in the persistent photoconductivity state”, Semiconductors
36(12):1389–1397.
[24] Kettemann S. (2007), Phys. Rev. Lett. 98, 176808.
[25] Kleimann P., Semmache B., Le Berre M., and Barbier D. (1998), Phys. Rev. B 57, 8966.
[26] Ferry D. K. (2000), Taylor & Francis, London, 384 p.