THE STATE VECTOR OPTIMAL ESTIMATES FOR DISCRETE STOCHASTIC SYSTEMS WITH UNCERTAIN PERTURBATIONS AND NOISE

2023;
: 116-125
Authors:
1
Vinnytsia National Technical University

Assessment of the dynamic systems state is widely used in various areas of technical activity. In practice, the most well-known and common methods of estimation are the methods of the Kalman filter and Luenberger observers. Most of the results known in the scientific literature for constructing estimates of the dynamic systems state in the presence of acting uncontrolled disturbances and noise are associated with stationary systems. The insensitivity of such estimates to the influence of accompanying uncontrolled perturbations is ensured by the introduction of certain restrictions that are imposed on a number of system matrices, and their optimality is achieved by minimizing the estimation errors covariance matrix trace due to those degrees of freedom that remained after the separation procedure was performed. The aim of the work is to develop a filter capable of generating state vector optimal estimates of a stochastic linear system with changeable parameters that are insensitive to the influence of uncontrolled inputs. In this case, the conditions that guarantee the convergence of the estimates obtained must be easily verifiable. The goal is achieved by using a one-to-one transformation of the equations of systems, followed by the application of the Kalman filter. The O'Reilly functional observer is used as the specified transformation. An example is given that illustrates the effectiveness of the proposed filter.

[1]     Bezzaoucha, S., Voos, H., and Darouach, M. (2017). A new polytopic approach for the unknown input functional observer design. International Journal of Control, online version, 1 – 20. https://doi.org/10.1080/00207179.2017.1288299

[2]      Chen, J. and Patton, R. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems. Springer; Softcover reprint of the original 1st ed. 1999 edition (November 2, 2012, p.375.

[3]     Koenig, D., Nowakowskiand, S., Bourjij, A. (1997). Observers for linear systems with unknown inputs. IFAC Proceedings Volumes Volume 30, Issue 6, Pages 479-484 doi:https://doi.org/10.1016/S1474-6670(17)43410-0

[4]     Gao, N., Darouach, M., Voos, H., and Alma, M. (2016). New unified h-infinity dynamic observer design for linear systems with unknown inputs. Automatica, 65, 43–52.  DOI: 10.1016/j.automatica.2015.10.052

[5]     Darouach, M., Zasadzinski, M., Bassong Onana, A., and Nowakowski, S. (1995). Kalman filtering with unknown inputs via optimal state estimation of singular systems. International Journal of Systems Science, 26(10), 2015–2028. doi: https://doi.org/10.1080/00207729508929152

[6]     Keller, J.Y., Darouach, M., and Caramelle, L. (1998). Kalman filter with unknown inputs and robust two stage filter. International Journal of Systems Science,29(1), 41–47. doi:https://doi.org/10.1080/00207729808929494

[7]     Andrii Y. Volovik; Lyudmila V. Krylik; Iryna M. Kobylyanska; Andrzej Kotyra; Saltanat Amirgaliyeva. (2018) Methods of stochastic diagnostic type observers. Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108082X (1 October 2018); doi: 10.1117/12.2501693;

[8]     A. Volovyk, V. Kychak, D. Havrilov (2021) Discrete Kalman Filter Invariant to Perturbations. Acta Polytechnica Hungarica, Vol. 18, No. 10, 2021, pp. 21-41, doi: 10.12700/APH.18.10.2021.10.2.

[9]     Gillijns, S. and De Moor, B. (2007). Unbiased minimum variance input and state estimation for linear discrete time systems with direct feedthrough. Automatica, 43 934–937. doi:https://doi.org/10.1016/j.automatica.2006.11.016

[10]   Воловик А.Ю., Гаврілов Д.В. (2019) Апроксимація розширеного фільтра Калмана паралельною двокаскадною структурою / Вісник Вінницького політехнічного інституту. – Вінниця, №4 (257). с.107-115.

[11]  Ignagni M. (2000) Optimal and suboptimal separate-bias Kalman estimators for a stochastic bias, IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 547–551.  doi: 10.1109/9.847741

[12]  Воловик А.Ю. (2023) Локально оптимальні робастні оцінки стану лінійних систем з невизначеними входами. Вчені записки таврійського національного університету імені В.І. ВЕРНАДСЬКОГО. Серія: Технічні науки Том 34 (73) № 2 с. 56 - 61. DOI https://doi.org/10.32782/2663-5941/2023.2.1/09

[13]  Yang C, Zheng J , Ren X,YangW, Shi H, ShiL. (2018) Multi-Sensor Kalman Filtering With Intermitent Measurements, IEEE Transctions on Automatic,Volume 63 Issue 3, P. 797–804. doi: 10.1109/TAC.2017.2734643

[14]  O'Reilly, J. (1983). Observers for Linear Systems, Academic Press. Issue on Analytical and Artificial Intelligence Based Redundancy in Fault Diagnosis. p.246.

[15]  Montgomery, D., Peck, E., Vining, G. (2021). Introduction to Linear Regression Analysis. Wiley; 6th edition (March 16, 2021) p.704

[16]  Stengel R., (2015). Flight Dynamics.: Princeton University Press, 2015 – 864 p.

[17]  Volovyk, A., Kychak, V., Osadchuk, A., Zhurakovskyi, B. (2023). Fault Identification in Linear Dynamic Systems by the Method of Locally Optimal Separate Estimation. In: Klymash, M., Luntovskyy, A., Beshley, M., Melnyk, I., Schill, A. (eds) Emerging Networking in the Digital Transformation Age. TCSET 2022. Lecture Notes in Electrical Engineering, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-031-24963-1-37