Modern navigation equipment should make it possible to determine in real-time the location of a ground-moving object (NRA) and the direction of its movement. To solve such problems, the equipment of consumers (AS) of satellite radio navigation systems (SRNS) is widely used. However, a number of circumstances, such as traffic in tunnels, and forests, within dense urban areas, the presence of natural and man-made radio interference, do not provide continuous reception of information from the necessary grouping of navigation Satellites. Therefore, for continuous navigation, NRAs are supplemented with autonomous navigation tools. In recent times, inertial means of autonomous navigation have been widely developed. The introduction of MEMS technologies and devices that combine microelectronic and micromechanical components has made it possible to create a wide range of small-sized sensors, such as accelerometers, angular velocity sensors, gyroscopes, and magnetometric sensors. The development of microwave technologies has made it possible to create small-sized radar sensors, which determine the further development of odometric navigation tools. Radar sensors play a special role in collision avoidance systems for NRA movement in columns and in conditions of limited optical visibility. Creating autonomous navigation systems based on such sensors is an urgent scientific and technical task. Radar meters based on the Doppler effect are all-weather and round-the-clock tools for a comprehensive system technical solution to this problem. The Doppler sensitivity of the meters significantly depends on the frequency of operation of the receiving and transmitting equipment, the maximum of which is reached in the millimeter frequency range. Taking into account the circumstances mentioned above, as well as the relatively high price of radar equipment, an important scientific and practical problem is the maximum unification of technical solutions for the construction of meters, namely: the choice of circuitry, element base and materials; development of test methodology, composition of spare tools and devices, operational documentation. An analysis of the tasks solved by radar meters of NRA motion parameters for their autonomous navigation and for ensuring traffic safety in columns and on rough terrain, namely, the prevention of collision with obstacles in conditions of limited optical visibility, was carried out. Radar methods of autonomous navigation and collision avoidance are analyzed, their disadvantages and advantages are indicated, proposals for solving the issues of improving the accuracy and noise immunity of radar meters are formed.
[1] О. Чередніченко, А. Валацкене Інтелектуальні транспортні системи як інструменти управління транспортними потоками (на прикладі м. Києва. Містобудування та територіальне планування. С. 416 – 450. DOI: 10.32347/2076-815X.2022.80.416-450
[2] Тревого І.С., Савчук С.Г., Денисов О.М., Волчко П.І. Новий взірцевий геодезичний базис. Вісник геодезії та картографії, 2004. №1(32), – P. 12-16.
[3] A. T. Kryvyovyaz, Yu. I. Budaretskyi, M. V. Bakhmat. Methods of building tamper-proof navigation systems for determining the location of land-based moving objects, Lviv: NLTU. – 2015. – No. 25-5. – P. 321–327.
[4] М. В.Бахмат, Ю. І. Бударецький, Т. В. Лаврут, В. В. Бондарєв Теоретичні та експериментальні дослідження спектру доплерівського сигналу на виході приймально-передавального модулю радіолокаційного вимірювача параметрів руху. Полтава: ПНТУ. – 2019. – №5. – С. 108–112. doi: 10.26906/SUNZ.2019.5.108
[5] Ю. І.Бударецький, М. В. Бахмат, Л. І. Сопільник, С. Ю. Бударецький Економічна ефективність радіолокаційного вимірювача параметрів руху об’єктів РВіА та бронетехніки / Львів: ЛУБП. – 2019. – №21. – С. 21–28. DOI: doi.org/10.5281/zenodo.3376866Zenodo (http://doi.org/10.5281/zenodo.3376866)
[6] M. V. Bakhmat, Yu. I. Budaretskiy, V. I. Hrabchak and el. Method of compensation of the influence of the vertical component of the carrier speed vector in radar meter of motion parameters with transceiver module of two-antenny (janus) type. Budapest: The scientific heritage. – 2021. – №76. – Р. 30–35. DOI: doi.org : 10.24412/9215-0365-2021-76-1-30-34.
[7] Sergienko R.V. / Evaluation of non-parallelism of the visual axis of the visor to the dynamic axis of the machine by the method of driving between two points of the geodetic network / Military-technical bulletin. - Lviv: ASV, 2013. - No. 8. P. 77-80.
[8] Prykhodko A.I. Field calibration of navigation equipment of the CMU: Training manual / A.I. Prikhodko – Sumy: VI RViA, 2005. – 55 p
[9] Yu.I Budaretskyi, V.V. Prokopenko, S.A. Martynenko. Peculiarities of the construction of an automated control and testing complex for researching the characteristics of vehicles of artillery units. Military-technical collection 3/2010. P. 7-12.
[10]Yu. I. Budaretskyi, M. V. Bakhmat, L. I. Sopilnyk, S. Yu. Budaretskyi /. Economic efficiency of the radar measurement of movement parameters of RViA objects and armored vehicles / Lviv: LUBP. – 2019. – No. 21. – pp. 21–28. DOI: doi.org/10.5281/zenodo.3376866.
[11]Kraynyk L.V., Mytnyk Y.F., Grubel M.G., Budaretskyi Yu.I / Automated measuring complex for the study of fuel-speed characteristics 38. - pp. 318-320. EVALKITS – Your entry into radar! Quick and easy to use. Internet resource Access code: https://siliconradar.com/evalkits/
[12]Радарний давач DR15S-M30E-IOL8X2-H1141. Internet resource Access code: https://skifcontrol.com.ua/product/radarnyj-datchik-dr15s-m30e-iol8x2-h1141/