The use of Legendre polynomials for the approximation of one-dimensional distributions of planetary mass densities and the study of their convergence

Department of Cartography and Geospatial Modeling, Institute of Geodesy, Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

This paper presents investigation of the image's possibility of distribution of lumply-continuous functions with are presented by Legendre polynomials and practical realization of this technique and methods for its improving were investigated.


  1. Demidovich B.P., Maron N.A. – Osnovy vychislitel'noj matematiki [Foundations of Computational Mathematics] Publishing house F.M. lit., Moscow, 1969, 658 p.
  2. Demidovich B.P., Maron I.A., Shuvalova E.Z. – Chislennye metody analiza. Priblizhenie funkcij, differencial'nye i integral'nye uravneniya. Publishing house Nauka. [Numerical methods of analysis. Approximation of functions, differential and integral equations.], Moscow, 1967, 368 p.
  3. Zharkov V.N., Trubicin V.P. Fіzika planetarnix nedr [Physics of planetary mineral resources]. Moscow: Nauka, Moscow. Home Edition fiz.-mat. lit., 1980, 448p.
  4. Kartvelishvili K.M. Planetarnaya plotnostnoya model' i normal'noe gravitacionnoe pole Zemli [Planetary density model and the normal gravitational field of the Earth]. Mosccow: Nauka, 1982, 93 p.
  5. Meshheryakov G.A. Zadachi teorii potenciala i obobshhennaya zemlya [Problems of potential theory and the generalized land]. Moscow: Nauka, Home Edition fiz.-mat. lit., 1991, 216 p.
  6. Muratov R.Z. Potencialy elipsoida [The potentials of the ellipsoid], Moscow, Atomizdat, 1976, 144 p.
  7. Fys M.M., Nikulishyn V.I. Pro yedynyi alhorytm vyznachennia znachen hustyny, potentsialu ta enerhii odnovymirnoho rozpodilu mas elipsoidalnoi planety.[About unified algorithm for determining the density potential energy and one-dimensional mass distribution of ellipsoidal planet]. «Heodeziia, kartohrafiia ta aerofotoznimannia»[ Geodesy, Cartography, and Aerial Photography]. 2009, no.71.
  8. Fys M., Nikulishyn V., Pokotylo I., Kotyk Z. Nablyzhennia odnovymirnykh rozpodiliv mas elipsoidalnykh til riadom po polinomakh Lezhandra ta sposoby pokrashchennia zbizhnosti [Approaching the one-dimensional mass distribution of ellipsoidal bodies in a number of Legendre polynomials and how to improve the convergence]. Zbirnyk naukovykh prats “Novitni dosiahnennia heodezii, heoinformatyky ta zemlevporiadkuvannia, Yevropeiskyi dosvid”[ Recent advances in geodesy, geoinformatics and land management - the European experience]. 2009, Chernihiv.
  9. Dziewonski  A.M., Anderson D.L. Preliminary reference Earth model. Physics of the Earth and Planet. Inter, 25, 1981, pp.297-356.
  10. Dziewonski  A.M., Halls A.L., Lapwyyd E.R. Parametricaly  Simple Earth mjdels,consisnent geophysical data. Phys. Planet .Inter,10,1975, pp.12-48.
  11. Marchenko A.N. Zayats A.S. Estimation of the potential gravitational energy of the earth based on reference density models.[Journal of geodynamics]. 2008, no. 1(7),pp. 5-24.

Uncaught exception thrown in session handler.

PDOException: SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate entry '0' for key 'uid': INSERT INTO {sessions} (sid, ssid, uid, cache, hostname, session, timestamp) VALUES (:db_insert_placeholder_0, :db_insert_placeholder_1, :db_insert_placeholder_2, :db_insert_placeholder_3, :db_insert_placeholder_4, :db_insert_placeholder_5, :db_insert_placeholder_6); Array ( [:db_insert_placeholder_0] => MKZtE4KriMh-cYleoRje9uI7b-tIEO8SpskDc_uFMfg [:db_insert_placeholder_1] => MKZtE4KriMh-cYleoRje9uI7b-tIEO8SpskDc_uFMfg [:db_insert_placeholder_2] => 0 [:db_insert_placeholder_3] => 0 [:db_insert_placeholder_4] => [:db_insert_placeholder_5] => nodeviewcount_views_limit|a:1:{i:1845;O:8:"DateTime":3:{s:4:"date";s:26:"2023-03-28 05:01:50.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:15:"Europe/Helsinki";}} [:db_insert_placeholder_6] => 1679968910 ) in _drupal_session_write() (line 209 of /home/science/public_html/includes/