On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons

Department of Engineering Geodesy, Ivano-Frankivsk National Technical University of Oil and Gas
Odessa National Polytechnic University

The purpose of this work is to show the prospects and the need to continue work in Ukraine on the creation of anti-aircraft systems and astronomical geodetic leveling (a combination of astronomical and high-precision geometric leveling), using GNSS and instruments that provide accurate measurements of deviations of the temple 0.1 geodynamic landfills and man-made, which create for the construction of a height foundation for the construction and operation of extremely important facilities. The method of achieving the goal is provided by theoretical studies of existing methods of astronomical and geodetic leveling, modern methods of forecasting neotectonic processes, GNSS accuracy and geometric leveling. The main results - the possibility of using astronomical and geodetic leveling in the forecast of catastrophic deformations of the earth's surface, including earthquakes, control of the results of geometric and GNSS leveling.Scientific novelty: recommendations for the use of astronomical and geodetic leveling of specially created profiles on geodynamic landfills for forecasting neotectonic processes, GNSS control and geometric leveling using the geoidal component, the idea of synchronous observations using zenith systems in astronomical and geodetic leveling.

1. Albayrak, M., Hirt, C., Guillaume, S., Özlüdemir, M. T., Halıcıoğlu, K., & Başoğlu, B. (2019). New astrogeodetic observations of vertical deflections at the Istanbul astrogeodetic network demonstrate ıssues in global gravity models along coastlines. 27th IUGG General Assembly.
2. Borovyi, V. O, & Burachek, V. G. (2017). High-precision engineering and geodetic measurements: a textbook. Vinnitsa: LLC "Nilan-LTD", 236 p. (in Ukrainian).
3. Borovyi, V. O, Burachek, V. G, Goncharenko, O. S, & Karpinsky, Y. O. Declaratory patent for invention 63575 A of Ukraine. # 2003054111. Applied 06.05.2003. Publ.15.01.2004. Bull.1. (in Ukrainian).
4. Burak, K., & Lysko, B. (2018). Implementation of alternative algorithms for defining the transformation paramerts of USK=2000 and coordinate systems of general layout during the marking operations. Archives of institute of civil ingeniring. N27. Poznań. ISSN 1897-4007.
5. Cacoń, S., Bosy, J., & Kontny, B. (1999). The GPS leveling network in the conurbation of Wroclaw. Artifical Satellites, 34(3), 163-170.
6. Czarnecki, K. (2010). Geodezja wspolczesna. Katowice, Wydawnictwo Gall, 487 p.
7. Darren Kerr (2015). Height Modernization from Static GPS Networks in Oregon: Evaluating NGS Guidelines and OPUS-Projects.
8. Dvulit, P. D., & Golubinka, Y. I. (2009). Comparative characteristics of determining the heights of the quasi-geoid of the territory of Ukraine using models of geoid/quasi-geoid and the gravitational field of the Earth. Geodesy, cartography and aerial photography. 72, 27-34. (in Ukrainian).
9. Dvulit, P., Dvulit, Z., & Sidorov, I. (2019). Determination of plumb lines with using trigonometric leveling and GNSS measurements. Geodesy, Cartography, and Aerial Photography, 89, 12-19.
10. Glazunov, A. S. (2008, April). Modern trends in geodetic astronomy. In GEO-SIBIR'-2008, Sb. materialov IV Mezhdunar. nauch. congress (GEO-SIBIR'-2008, Proc. IV Int. Scientific Congress) (pp. 183-188).
11. Glazunov, A. S. (2017). Status and prospects of deve¬lopment of geodesic astronomy in the russian federation. (in Russian).
12. Hirt, C., & Burki, B. (2006). Status of Geodetic Astronomy at the Beginning of the 21st Century. Retrieved from: http://www.ife.unihannover.de/ mitarbeiter/seeber/seeber_65/pdf_65/hirt8.pdf
13. Hirt, C., Seeber, G., Bürki, B., & Müller, A. (2006). Die digitalen Zenitcamera systeme TZK2-D und DIADEM zur hochpräzisen Geoidbestimmung. Retrieved from: http://www.mplusm.at/ifg/download/hirt-05.pdf 3Carlson, A. A. (1964). Measurement of deformations of engineering constructions. Moscow: Nedra. (in Russian).
14. Ivashchenko, M. V. (2017). Estimation of velocities according to GNSS observations In the Center for GNSS data analysis of GAO NAS of Ukraine for further geodynamic research. Bulletin of the Astronomical School, 13, 48-53. (in Ukrainian).
15. Karpenko, I. V. (2007). Physical bases of tectonics of global catastrophes. Coll. Science. prot Ukr. state geological exploration. in-tu. Kyiv: Ukr. state geological survey. Inst., 3, 74-82. (in Ukrainian).
16. Karpenko, I. V. (2011). Gravitational potential: definition and measurement at points on the surface of a nonspherical inhomogeneous body. Geophysical Journal, 4. 33, 74-88. (in Ukrainian).
17. Krasnorylov, I. I., Lvov, V. G, & Safonov, G. D. (1995). About astronomical definitions in AGS of the USSR and problems of geodetic astronomy. Geodesy and cartography. 8. 22-27. (in Russian).
18. Leica-absolute-tracker-t960-canner-(2020). https://www.hexagonmi.com/products/laser-tracker-іystems/ bundle30.
19. Medovikov, A., & Nigamatyanov, R. (2016). patent, Retrieved from: https://findpatent.ru/patent/ 176/1760313.html
20. Minster, J. B., Wysession M. E. et al. (2010) Precise Geodetic Infrastructure. National Requirements for a Shared Resource. The National academies press. pp. 142.
21. Molodensky, M. S, Eremeev, V. F., & Yurkina, M. I. (1960). Methods of studying the external gravitational field and the shape of the Earth. Proceedings of TsNIIGAiK, 131. 251 p. (in Russian).
22. Moritz, G. (1979). Modern physical geodesy, Moscow: "Nedra", 200 p. (in Russian).
23. Ostrovsky, A. E. (1978). Deformations of the earth's crust by observations of slopes. Moscow. Science, 184 p. (in Russian).
24. Ostrovsky, A. L., Burak, K. O., Zablocki, F. D., Черняга, P. G., & Tretiak, К. R.; under. ed. Ostrovsky A. L. (1998). Methodical manual on the organization of complex researches on geodynamic ranges of Ukraine. Section 5. Geodetic monitoring. Collective mono¬graph. Lviv, 58 p. (in Ukrainian).
25. Pellinen, L. P. (1978). Higher Geodesy (Theoretical Geodesy). Moscow, Nedra, 264 p. (in Russian).
26. Petrov, S. L. (2018). Monitoring of vertical displacements of technogenic loaded territories by geodetic methods. The dissertation on competition of a scientific degree of the candidate of technical sciences on a specialty 05.24.01 "Geodesy, photogrammetry and cartography". Lviv Polytechnic National University, Ministry of Education and Science of Ukraine. Lviv. (in Ukrainian).
27. Plag, H. P., Rothacher, M., Pearlman, M., Neilan, R., & Ma, C. (2009). The global geodetic observing system. In Advances in Geosciences: Volume 13: Solid Earth (SE) (pp. 105-127).
28. Savchuk, S. G. (2000). Higher Geodesy (Spheroidic Geo¬desy). Textbook. Lviv: Liga-Press, 248 p. (in Ukrainian).
29. Schack, P., Hirt, C., Hauk, M., Featherstone, W. E., Lyon, T. J., & Guillaume, S. (2018). A high-precision digital astrogeodetic traverse in an area of steep geoid gradients close to the coast of Perth, Western Australia. Journal of Geodesy, 92(10), 1143-1153
30. Serapinas, B. B. (2002). Geodetic bases of maps. Gravitational field. Heights Lecture 7. (in Russian). http://www.geogr.msu.ru/cafedra/karta/docs/GOK/gok_lecture_7.pdf
31. Staroseltsev, L. P., & Yashnikova, O. M. (2016). Estimation of errors in parameters determination for the of the Earth highly anomalous gravity field. Scientific and technical bulletin of information technologies, mechanics and optics, 16 (3). (in Russian).
32. System Solution. https://systemnet.com.ua (2019)
33. Tretyak, K., & Sidorov, I. (2012). Joint processing of satellite and ground geodetic measurements of high-precision construction network of the Dniester PSP. Bulletin of Geodesy and Cartography, 3 (78), 6-9. (in Ukrainian).
34. Zakharov, V. D. (2003). Gravity. From Aristotle to Einstein. Moscow: BINOM, 278 p. (in Russian).
35. Zariņš, A., Rubans, A., & Silabriedis, G. (2016). Digital zenith camera of the University of Latvia. Geodesy and Cartography, 42(4), 129-135.