On the accuracy of gravimetric provision of astronomo-geometric leveling on geodynamic and technogenic polygons

Department of Engineering Geodesy, Ivano-Frankivsk National Technical University of Oil and Gas

The purpose of this work is to prove the necessity and possibility of returning to the orthometric system of heights in Ukraine and to substantiate the ways of solving this problem. The method of achieving the goal is provided by theoretical studies of existing methods of astronomical and geodetic leveling, modern methods of forecasting neotectonic processes, GNSS accuracy and geometric leveling. The main results are: the requirements for the accuracy of gravimetric support of high-precision geometric leveling, both DGM of Ukraine and high-altitude network of geodynamic and man-made landfills. The theoretical possibility of determining orthometric heights for almost 90% of the territory of Ukraine with an accuracy of even 0.2 mm per 1 km of double stroke has been established. Scientific novelty and practical significance: it has been proved that even at the maximum values of GPP anomalies it is possible to consider orthometric and normal heights as segments of normal to the reference ellipsoid, as well as geometrical heights; if at astronomical and geodetic leveling to define a deviation of a temple with accuracy mθ_sr = 0,2 "(accuracy of modern zenith systems even 0,08"), it will bring an error in definition of a difference of orthometric heights of 0,2 mm on 1 km of the course if to determine this value from the available gravimetric maps of the deviation of the temple, this error will be 0.5-1 mm per 1 km of travel, which also corresponds to the leveling of even the first class; ; non-parallelism of equipotential surfaces should be taken into account when the difference between the force of gravity on the equipotential surface of the initial point of travel and at the point of intersection of this surface with the normal at the end point of travel exceeds 2 mGal; the force of gravity at the leveling station and on the force line of the field at the end of the course, at a height corresponding to the height of the corresponding leveling station, must be known at the sum of excesses during 10 m per 1 km with an accuracy of only 20 mGal. m per 1 km - 2 mGala, therefore, the modern model EIGEN-CG03C (accuracy is estimated within 8 Mgal) in most of the plains of Ukraine can provide gravimetric data for the creation of state leveling networks and high-precision leveling during engineering and geodetic works and works on geodynamic and man-made landfills.

  1. Barlik, M., & Pachuta, A. (2007). Physical geodesy and geodetic gravity. Teoria i praktyka., Warsaw, 2007, OWPW. (in Poland). https://smp.am.szczecin.pl/dlibra/publication/626/edition/500/geodezja-f...
  2. Brovar, V. V., Maznitsky, V. A., & Shimbirev, B. P. (1961). Theory of the figure of the Earth. M.: Geodesizdat, 256 p. (in Russian).
  3. Cacoń, S., Bosy, J., & Kontny, B. (1999). The GPS levelling network in the conurbation of Wrocław. Artifical Satellites34(3), 163-170. https://scholar.google.com.ua/citations?view_op=view_citation&hl=uk&user...
  4. Czarnecki, K. (2010). Geodezja wspolczesna. Katowice, Gall Publishing House, 10, 487 p. (in Poland). https://smp.am.szczecin.pl/dlibra/publication/2376
  5. Dwulit, P. D. & Golubinka, Y. I. (2009). Comparative characteristics of determining the quasi-geoid heights of the territory of Ukraine using geoid/quasi-geoid models and the Earth's gravitational field. Geodesy, cartography and aerial photography, 72, 27-34. (in Ukrainian). https://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-72-2009/c...
  6. Dwulit, P. D. (2014). Physical Geodesy. Kyiv: VPC "Express". (in Ukrainian).
  7. Erol, Bihter. (2012).Spectral evaluation of Earth geopotential models and an experiment on its regional improvement for geoid modelling. Journal of Earth System Science, 121, 823–835. https://doi.org/10.1007/s12040-012-0190-x
  8. Helmert, F. R. (1884). Die mathematischen und physikalischen Theorieen der höheren Geodäsie. BG Teubner. https://books.google.com.ua/books?hl=uk&lr=&id=YjteAAAAcAAJ&oi=fnd&pg=PR...
  9. Hirt, C., & Burki, B. (2006). Status of Geodetic Astronomy at the Beginning of the 21st Century. http://www.ife.unihannover.de/mitarbeiter/seeber/seeber_65/pdf_65/hirt8.pdf
  10. Hirt, C., Seeber, G., Bürki, B., & Müller, A. (2006). Die digitalen Zenitkamerasysteme TZK2-D und DIADEM zur hochpräzisen Geoidbestimmung. na. https://ddfe.curtin.edu.au/gravitymodels/ERTM2160/pdf/Hirt2005_etal_ober...
  11. Kurenev, Y. P, & Malik, T. M. (2010). Regarding the interpretation of the term "normal height". Bulletin of Geodesy and Cartography, 6(69), 6-9. (in Ukrainian).
  12. Мigal, М. К. (1969). Lectures on the theory of the figure of the Earth, L.: FOP UEM LOLPI, 133 p. (in Russian). https://doi.org/10.1007/978-94-010-3359-6_5
  13. Moritz, G. (1979). Modern physical geodesy, M.: "Subsoil", 200 p. (in Russian).
  14. Niethammer, T. (1947). Die genauen Methoden der astronomisch-geographischen Ortsbestimming. Basel, Birkhauser. https://doi.org/10.1007/978-3-0348-6811-2
  15. Niethammer, T. (1939). Das astronomische Nivellement im Meridian des St. Gotthard. Kartenverl. d. schweizer. Landestopographie.
  16. Ostroumov, V. Z. (2011). Development and research of new methods for calculating quasi-geoid parameters based on the use of global navigation satellite systems GLONASS and GPS to ensure sea level monitoring. (in Russian). http://www.rfbr.ru/rffi/ru/project_search/o_44310
  17. Pellinen, L. P. (1978). Higher Geodesy (Theoretical Geodesy). M., Nedra, 264 p.] (in Russian).
  18. Serapinas, B. B. (2012). Geodetic bases of maps. Gravitational field. Heights Lecture 7. (in Russian). http://www.geogr.msu.ru/cafedra/karta/docs/GOK/gok_lecture_7.pdf
  19. Szpunar, W. (1962). Geodezja wyzsza i astronomia geodezyjnaLodz. Warszawa Panstwowe wydawnictwo naukowe. https://ui.adsabs.harvard.edu/abs/1962gwag.book.....S/abstract