METROLOGICAL SUPPORT OF THE MEASUREMENT of TEMPERATURE DIFFERENCE AND TEMPERATURE IN SOLAR SYSTEMS

2018;
: pp. 54-64
1
Lviv Polytechnic National University
2
PJSC Concern Galnaftogaz, Ukraine

It  is  noted  that  for  the  efficiency  enhancement  of  solar  energy  converters  it  becomes  necessary  to measure exactly the temperature and temperature difference. The requirements of normative documents exceed the metrological parameters of  the standardized temperature sensors. Therefore,  the challenge of  thermometers and temperature difference meters accuracies can be solved by errors correction within simple and practically suitable procedure. 

The expediency of the implementation of precision thermometers based on platinum resistance thermoconverters and multi-valued specialized integrated schemes are shown. The structure of the precise digital thermometer is developed. The features of its realization are shown, depending on the sensor. Basing on analyzing the digital thermometer errors, the method for its adjustment is considered. It consists in correcting their additive and multiplicative error components.

It is emphasized on the complexity of the implementation of accurate digital temperature difference meters because of the need to ensure the invariance to the effects of four-wire connecting lines and measuring currents after significantly reducing their sensitivity  threshold. The  structure  and  errors  correction method  of  precision  temperature  difference meters with  time-varying signals from two sensors and determination of the measurement result in digital form are proposed. It becomes possible to unify the scheme design of precision thermometers as well as sensitive temperature difference meters.  

To ensure the effectiveness of measurements in dispersed information-measuring devices of solar energy converters, it is also  proposed  to  develop  the  structures  of  intellectual  thermometers  and  temperature difference meters  for  purposes  of  IoT  or information-measuring channels of cyber-physical systems.

[1] D. Placko. Metrology in Industry. The Key for Quality. John Wiley & Sons Inc., 2013.  

[2]  P.  Ornatskiy.  Theoretical  basis  of  information  and measurement  technology. Kyiv, Ukraine: Vyscha shkola. 1983.  (In Russian).

[3]  ISO  10012:2003.  Measurement  management  system. Requirements  for  measurement  processes  and  measuring equipment. 2003.

[4] Data Acquisition Handbook, A Reference for DAQ and Analog &  Digital  Signal  Conditioning. Measurement  Computing Corporation, 2012. 

[5]  Cyber-Physical  Systems:  Metrological  Issues.  S. Yatsyshyn, B. Stadnyk, (Eds). IFSA Publishing, Barcelona, 2016. 

[6]  Yu.  Yatsuk,  M.  Mykyjchuk,  V.  Zdeb,  R.  Yanovych, “Metrological Array  of  Cyber-Physical  Systems.  Part  11. Remote Error Correction of Measuring Channel”, Sensors & Transducers, vol. 192, iss. 9, p. 22–29, 2015.

[7] Directive 2012/27/EU of  the European Parliament and of  the  Council  of  25 Oct.2012  on  energy  efficiency,  amending Directives 2009/125/EC and 2010/30/EU and  repealing Directives 2004/8/EC  and  2006/32/EC Text with  EEA  relevance  OJ  L  315, 14.11.2012,  p.  1–56:  available:  https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0027...

[8]  EU  Energy  Efficiency  Directive  (2012/27/EU) Guidebook  for  Strong  Implementation.  [On-line].  Available: http://eedguidebook.energycoalition.eu/images/PDF/EED.pdf 

[9] Energy Efficiency Directive deal: First  stepping  stone for  attractive  Energy  Union,  2018.  [On-line].  Available: http://energycoalition.eu/eed-deal. 

[10] C. Canevari, Art. 8 of Energy Efficiency Directive on Energy Audits, Energy Workshop Energy Community, Vienna, 23 Nov.  2017.  [On-line].  Available:  www.cepi.eu/index.php? mact=Profile,cntnt01 

[11]  Energy  Perspectives  2018,  Long-term  macro  and market  outlook.  [On-line].  Available:  https://www.equinor. com/content/dam/statoil/documents/energy-perspectives/energy-perspectives-2018.pdf 

[12]  K.  Sreekanth,  Energy  Policy:  Perspectives, Challenges  and  Future  Directions,  Kuwait:  Nova  Science Publisher, 2018.

[13] E. Worrell, L. Bernstein, J. Roy, L. Price, J. Harnisch, “Industrial  energy  efficiency  and  climate  change  mitigation”, Energy Efficiency, vol. 2, p.109–123, 2009.

[14]  E.  Cagno,  A.  Trianni,  G.  Spallina  et  al.  Energy Efficiency,  vol.10,  p.855,  2017.  [On-line].  Available: https://doi.org/10.1007/s12053-016-9488-x

[15]  G.  Dyakova  G.  et  al,  “Priority  directions  of  the improvement of  energy management at  the enterprise”,  IOP Conf. Ser.: Earth Environ. Sci.,  90 012218, 2017.

[16] T. Sudhakar, P. Anjaneya, R. Prahlada,  “Analysis  of Process  Parameters  to  Improve  Power  Plant  Efficiency”,  IOSR Journal of Mechanical and Civil Engineering, vol. 14,  iss. 1, ver. II, p. 57–64, 2017. 

[17] By 2020, 11 % of energy in Ukraine will be produced from  renewable  sources.  2014.  [On-line].  Available: http://ecotown.com.ua/news/Do-2020-roku-v-Ukrayini-11-enerhiyi-vyroblyat...

[18]  P.  Stolyarchuk,  M.  Mykyychuk,  V.  Yatsuk,  M. Mikhaleva,  O.  Shpack,  T.  Oleskiv,  “Development  of  a mathematical  model  of  efficiency  solar  converters”,  East-Europ. Journ. Adv. Techn, no. 5/8(71), p. 30–36, 2014.

[19] Order of Ministry of Housing and Communal Services of Ukraine, 27.06.2008, no.190. On  approval  of  the Rules  for  the use of  centralized municipal water  supply  and  sewage  systems  in settlements  of  Ukraine.  [On-line].  Available:  https://zakon.rada.gov.ua/laws/show/z0936-08.

[20]  T.  Oleskiv,  V.  Yatsuk,  “Metrological  support  of temperature  difference  meters  on  the  basis  of  platinum thermocouples  with  two-wire  communication  line”,  Measuring equipment and metrology, no.74, p.25-28, 2013. 

[21]  Kh.  Vasylykha,  Yu.  Yatsuk,  V.  Zdeb,  V.  Yatsuk, “Experimental  studies  of  temperature  channel  efficiency  for  solarenergy  systems”,  East.-Europ.  Journ.  Enterprise  Techn.,  no.  3/8 (87), p. 10–16, 2017.

[22]  Kh.  Vasylykha.  Improvement  of  the  normative  and technical  basis  of  tests  of  solar  transducers.  Autoref.  PhD  dys., Lviv Polytech. Nat. Univ, 2017.

[23]  V.  Vasylyuk,  “Principles  of  construction  of  high-precision  temperature  sensors  based  on  pn-junction”,  Measuring equipment and metrology. no. 53, p. 70–76, 1998.

[24]  O.  Kanoun.  „Kalibrationsfreie  Temperaturmessung durch Parameterextraktion aus der Strom-Spannungskennlinie von pn-Übergängen“,  Technisches  Messen,  vol.68,  no.9,  p.442-448, 2003.

[25] S. Vivek, J. Chen, AN60590 - PSoC® 3, PSoC 4, and PSoC  5LP  -  Temperature  Measurement  with  a  Diode.  Last Updated:  Sep  16,  2018,  [On-line].  Available:  https://www.cypress. com/documentation/application-notes/an60590-psoc-3-psoc-4-and-psoc-5lp-temperature-measurement-diode.

[26] Yu.  Shwarts  et  al.  “Limiting  characteristics  of  diode temperature  sensors”,  Sensors  and  actuators,  vol.86,  p.197-205, 2000.

[27]  AD7792/AD7793,  3-Channel,  Low  Noise,  Low Power, 16-/24-Bit ∑-Δ ADC with On-Chip In-Amp and Reference, Analog  device.  [On-line].  Available:  http://www.acdcshop.gr/ content/AD7793BRUZ.pdf 

[28]  Thermostat  liquid  TCP-0105HO-100.  Instruction  on operation.  JLE  “Termomir”.  [On-line].  Available: http://thermomir.com.ua/images/files/nast/tsr-0105no-100.pdf. 

[29] Ohmmeter digital reference OC – 0103. JLE “Termomir”. [On-line]. Available: https://thermomir.com/p16543680-ommetr-tsifrovij-etalonnij.html.

[30]  CY8CKIT-059  PSoC®  5LP  Prototyping  Kit  with Onboard Programmer and Debugger, Last Updated: Apr 02, 2018. [On-line].  Available:  http://www.cypress.com/ documentation/development-kitsboards/cy8ckit-059-psoc-5lp-prototyping-kit-onboard-programmer-and