METROLOGICAL RELIABILITY SUPPORT OF THE DISPERSED MEASURING SYSTEM

2018;
: pp. 71-82
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, Ukraine
4
Lviv Polytechnic National University

Cyber-physical  systems  as  dispersed  systems  based  on  interacting  networks  of  physical  and  computing components provide new functionalities for improving the quality of measurement processes. It is proposed to carry out automated operational setup of metrological parameters of these systems measuring channels during operation basing on the code-controlled measures-imitators. The  application  of  such measures  allows  the  implementation  of  control  systems  ensuring  the  suitability  of measuring  methods  and  measuring  equipment  to  intended  applications.  It  is  also  shown  that  the  operational  control  of  the measuring  channels  parameters  allows  ensuring  the  metrological  conformity  and  reliability  of  the  dispersed  cyber-physical systems, since the traditional methods cannot be used here. It demonstrates that construction of passive electric values calibrators disparate of active ones, is associated with fundamental constraints due to the impacts of the switching elements parameters. It is confirmed that the implement of the simulating electric resistance principle for the considered circuits is conjugated simultaneously to the enhancement of discreteness, exactness and reliability, and functionality. 

It  is  proposed  to  implement  the  four-clamping  measures  of  electric  resistance  at  the  low-voltage  reproduction  range. Enhancement of  the obtained measurements  results  is achieved by  their processing  for  two polarities of  the measuring currents. Ways of designing  four-conductor  resistance  imitators with  invariance  to  their  additive  errors  impacts  are  considered.  It  is  also suggested and analyzed code-controlled measures of admittance, which can be used for impedance meters’ operative control. The errors  analysis  envisages  that  the  simulators  metrological  properties  of  immittance  measures  could  be  determined  only  by parameters of the applied measures of resistance, capacitance and inductance. 

The suggested and analyzed code-controlled measure structures of electrical resistance and complex conductivity on  the basis  of  chip-programmable  systems  can  be  implemented  in microelectronics.  Practical  implementation  of  a  universal  portable calibrator of active and passive electric values with automatic error correction is considered.

[1] D. Placko. Metrology in Industry. The Key for Quality. John Wiley & Sons Inc., 2013.  

[2]  P .  Ornatskiy,  Theoretical  basis  of  information  and measurement technology. Kyiv, Ukraine:Vyscha shkola, 1983. 

[3]  ISO 10012:2003 Measurement management systems – Requirements  for  measurement  processes  and  measuring equipment.

[4]  Data-Acquisition-Handbook.  A  Reference  For  DAQ and  Analog  &  Digital  Signal  Conditioning,  2012  [Online]. Available:  http://www.mccdaq.com/pdfs/anpdf/Data-Acquisition-Handbook.pdf

[5]  Cyber-Physical  Systems. Metrological  Issues.  Ed.  S. Yatsyshyn, B. Stadnyk. IFSA Publ., 2016.

[6]  Yu.  Yatsuk,  M.  Mykyjchuk,  V.  Zdeb,  R.  Yanovych, “Metrological Array of Cyber-Physical Systems. Part 11. Remote Error Correction of Measuring Channel”, Sensors & Transducers,  vol.192, iss.9, p.22-29, 2015.

[7] A. Bakker, K. Thiele, J.H Huijsing. “A CMOS nested-chopper  instrumentation  amplifier  with  100  nV  offset”,  IEEE Journal of Solid-State Circuits, vol.35, p.1877–1883, 2000.

[8]  V.  Yatsuk,  P.  Malachivskiy.  Methods  to  improve measurement accuracy. Lviv, Ukraine: Beskyd-Bit, 2008. 

[9] R.M. Ogirko,  “Non-montage  control of metrological characteristics of  industrial measuring  instruments”, “Measuring equipment and metrology”, no.60, p.73-86, 2002. 

[10]  R.  Yanovych,  Yu.  Yatsuk,  V.  Zdeb,  V.  Yatsuk, “Possibilities  of  Precision  Ohmmeter  Calibration  in  the Exploitation  Condition”,  in  Proc.  of  the 7th Intern.  Conf.  on Intelligent Data Acquisition and Advanced Comp. Systems, Berlin, Germany, vol.1, p.86-89. 2013.

[11] Ye. Polischuk, M. Doroghovets, V. Yatsuk, V. Vanko, T.  Bojko,  Metrology  and  measuring  equipment.  Lviv,    Ukraine: Lviv Politech. Publ. House, 2012. 

[12]  Linear  Circuit  Design  Handbook,  Analog  Devices Inc., Engineering News, 2011.   

[13]  James H.  Bentley,  Karen M. Hess,  A  Programmed Review  for  Electrical  Engineering,  Springer  Science &  Business Media, 2012. 

[14]  9820  Programmable  Low  Ohm  Resistance,  Time Electronics  Calibration,  Test  &  Measurement.  [Online]. Available:  http://www.hispacontrol.com/recursos/pdf/time_ 9819_9820.pdf

[15]  V.  Yatsuk,  “Development  Principles  of  Resistance Code-controlled Measures”, Measuring equipment and metrology, no.55, p.35-43, 1999.

[16] M. Mykyjchuk, O. Ivakhiv, V. Yatsuk, “Measurement. Resistance Calibrators for Verification of Instruments Destined for ndustrial  Applications”. Measurement.  Automation. Monitoring, vol.61, no.08, p.390-394, 2015.

[17] V.  Yatsuk, Development  of  the  theory  and methods or  improving  the  quality  of  measuring  equipment  using  code-controlled measures, Dr.Sc.Thesis, Lviv Polytech. Nat. Un., 2004.

[18]  CY8CKIT-059  PSoC®  5LP  Prototyping  Kit  with Onboard  Programmer  and  Debugger,  Apr.  02,  2018.  [Online]. Available:  http://www.cypress.com/documentation/development-kitsboards/cy8ckit-059-....

[19]  AD8551/AD8552/AD8554,  Zero-Drift,  Single-Supply,  Rail-to-Rail,  Input/Output  Operational  Amplifiers,  Data Sheets,  2015,  Analog  Devices,  Inc.  [Online].  Available: http://www.analog.com 

[20]  Yatsuk  V.O.,  Matviiv  R.O.,  Yatsuk  Y.V.  “Portable resistance  imitators  with  four-wire  connection”,  in  Proc.  XXV ntern.  Conf.  for  automatic  control,  automatics  –  2018,  Lviv, Ukraine, 2018, pp.115-116. 

[21]  B.  Schweber,  How  to  Select  the  Right  Galvanic solation  Technology  for  IoT  Sensors, Contributed By Digi-Key's North  American  Editors,  Jul.12,  2017.  [Online].  Available: https://www.digikey.com/en/articles/techzone/2017/dec/how-select-galvani...

[22] M. Mykyychuk, Ye. Pacarnuik, V. Yatsuk. Simulator of  large  values  resistance. Pat.  5411 UA,  IPC G01R27/00.; Bul. №7-1. 1994. 

[23] V. Yatsuk, T. Bubela, Ye. Pokhodylo, Yu. Yatsuk, R. Kochan,  “Improvement  of data  acquisition  system  of  objects physic-chemical  properties”,  in  Proc. 9th  IEEE  Intern.  Conf.  on ntel.  Data  Acq.  and  Adv.  Comp.  Systems:  Technology  and Applications. Bucharest, Romania, 2017, pp.41-46.

[24]  T. Bubela,  V. Yatsuk,  Y. Pokhodylo, M. Mykyychuk, V.  Dmytriv,  “Admittance  Research  and  Simulation  of Nonelectrical Nature Object Properties, in Proc. 14th Int. Conf. on Adv.  Trends  in  Radioelectronics,  Telecom.  and  Comp.  Eng., TCSET-2018, 2018, pp.238-242.

[25]  V.  Yatsuk,  R.  Matviyiv,  Y.  Yatsuk,  “Analysis  of Metrological  Properties  of  Portable  Calibrators  with  Errors Correction”, Metrology and Devices, no.4 (72), p.33-40, 2018.

[26]  R.  Palmer.  DC  Parameters:  Input  Offset  Voltage, Application  Report  SLOA059  –  March  2001.  Texas  Instr.  Inc. [Online]. Available: http://www.ti.com/lit/an/sloa059/sloa059.pdf