DC MOTOR CONTROL SYSTEM WITH OPTIMIZATION OF THE TRANSIENT DURATION

1
The Cracow University of Technology, Poland
2
Lviv Politechnic National University

The synthesis of the structure of the automatic control system of direct current motors is carried out, and the methodology of the study of the duration of the transient process during the control of the direct current motor is presented. A study of the influence of the regulator parameters on the duration of the transition process was carried out, which allowed to choose the optimal ones for the criterion of the minimum duration of the transition process

  1. S. Mansmann, T. Neumuth, M. H. Scholl, Multidimensional Data Modeling for Business Process Analysis, 26th Int. Conf. on Conceptual Modeling, Nov. 5–9, 2007, Auckland, New Zealand. DOI: 10.1007/978-3-540-75563-0_4
  2. M. Ruderman, et al. “Optimal state space control of DC mo- tor”. IFAC Proceedings Vol. 41.2 (2008): 5796–5801. https://www.researchgate.net/publication/216232528_Optima l_State_Space_Control_of_DC_Motor
  3. B. Umesh Kumar, and R. Narvey. “Speed control of DC motor using fuzzy PID controller”. Advance in Electronic and Electric Engineering 3.9 (2013): 1209–1220.
  4. Y. Kin, and J. Huang. “Development of a remote-access labo- ratory: a DC motor control experiment”. Computers in Industry 52.3 (2003): 305–311. https://www.researchgate. net/publication/ 222617767_Development_of_a_remote access_laboratory_A_dc_motor_control_experiment
  5. Saab, Samer S., and Raed Abi Kaed-Bey. “Parameter identi- fication of a DC motor: an experimental approach”. ICECS 2001. 8th IEEE International Conference on Electronics, Cir- cuits, and Systems (Cat. No. 01EX483). Vol. 2. IEEE, 2001. https://www.semanticscholar.org/paper/Parameter- identification-of-a-DC-motor%3A-an-approach-Saab-Kaed- Bey/9.
  6. S. Koyamada, Y. Shikauchi, K. Nakae, M. Koyama, S. Ishii. Deep Learning of FMRI big data: a novel approach to subject-transfer decoding. 31 Jan. 2015. https://arxiv.org/ abs/1502.00093
  7. H. C. Purchase, N. Andrienko, T J. Jankun-Kelly, M. Ward. Theoretical Foundations of Information Visualization. In: Inf. Visualization: Human-Centered Issues and Perspectives, 1970, 46–64. DOI:10.1007/978-3-540-70956-5_3
  8. K. Börner, C. Chen, K. Boyack. Visualizing knowledge do- mains. An. Rev. of Inf. Sc. & Techn., Vol. 37, 2003, Med- ford, NJ: Information Today, Inc./Amer. Soc. for Inf. Sc. and Techn. https://www.academia.edu/2874912/Visualizing_ knowledge_domains
  9. J. Emerson, W. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann, H. Wickham. The Generalized Pairs Plot. Journ Comp. and Graph. Statistics, Vol. 22(1), 2013, 79–91. DOI: 10.1080/10618600.2012.694762
  10. D. Andrews. Plots of high-dimensional data, Biometrics, Vol. 28, No.1, 1972, 69–97. DOI: 10.2307/2528964
  11. O. Poliarus, Y. Poliakov, A. Lebedynskyi. Detection of landmarks by autonomous mobile robots using camera-based sensors in outdoor environments. IEEE Sensors Journal, Vol. 21, Iss. 10, 2021, 11443–11450 DOI: 10.1109/JSEN.2020. 3010883.