Thermal Decomposition Kinetics of Torrefied Oil Palm Empty Fruit Bunch Briquettes

: pp. 325 – 328
Bemgba Nyakuma, Arshad Ahmad, Anwar Johari, Tuan Abdullah, Olagoke Oladokun, Habibu Uthman and Muhamad Halim

Bemgba Nyakuma-1, Arshad Ahmad-1, Anwar Johari-1, Tuan Abdullah-1, Olagoke Oladokun-1, Habibu Uthman-2 and Muhamad Halim-3

  1. Institute of Future Energy, Centre for Hydrogen Energy, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia;,
  2. Centre for Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, International campus, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
  3. Centre of Polymer Composite Research & Technology (PoCResT), Institute of Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia

The study is aimed at investigating the thermal behavior and decomposition kinetics of torrefied oil palm empty fruit bunches (OPEFB) briquettes using a thermogravimetric (TG) analysis and the Coats-Redfern model. The results revealed that thermal decomposition kinetics of OPEFB and torrefied OPEFB briquettes is significantly influenced by the severity of torrefaction temperature. Furthermore, the temperature profile characteristics; Tonset, Tpeak, and Tend increased consistently due to the thermal lag observed during TG analysis. In addition, the torrefied OPEFB briquettes were observed to possess superior thermal and kinetic properties over the untorrefied OPEFB briquettes. It can be inferred that torrefaction improves the fuel properties of pelletized OPEFB for potential utilization in bioenergy conversion systems.

[1] Toscano G., Pizzi A., Pedretti E. et al.: Fuel, 2015, 143, 89.
[2] Uemura Y., Matsumoto R., Saadon S. and Matsumura Y.: Fuel Process. Technol., 2015, 138, 133.
[3] Razuan R., Finney K., Chen Q. et al.: Fuel Process. Technol., 2011, 92, 609.
[4] Arias B., Pevida C., Fermoso J. et al.: Fuel Process. Technol., 2008, 89, 169.
[5] Felfli F., Luengo C., Suárez J. and Beatón P.: Energy Sustain. Dev., 2005, 9, 19.
[6] Basu P.: Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic press 2010.
[7] Shang L., Ahrenfeldt J., Holm J. et al.: J. Anal. Appl. Pyrol., 2014, 108, 109.
[8] Nyakuma B., Johari A. and Ahmad A.: J. Appl. Sci., 2012, 12, 2527.
[9] Grover P. and Mishra S.: Biomass briquetting: technology and practices. Food and Agriculture Organization of the United Nations 1996.
[10] Ng W., Lam H., Ng F. et al.: J. Cleaner Prod., 2012, 34, 57.
[11] Nasrin A., Choo Y., Lim W. et al.: J. Eng. Appl. Sci., 2011, 6, 446.
[12] Poudel J., Ohm T.-I. and Oh S.: Fuel, 2015, 140, 275.
[13] Xue G., Kwapinska M., Kwapinski W. et al.: Fuel, 2014, 121, 189.
[14] Larsson S., Rudolfsson M., Nordwaeger M. et al.: Appl. Energy, 2013, 102, 827.
[15] Uemura Y., Omar W., Othman N. et al.: Fuel, 2013, 103, 156.
[16] Uemura Y., Omar W., Tsutsui T. and Yusup S.: Fuel, 2011, 90, 2585.
[17] Nyakuma B., Johari A., Ahmad A. and Abdullah T.: Energy Procedia, 2014, 52, 466.
[18] Nyakuma B., Ahmad A., Johari A. et al.: arXiv preprint arXiv:1505.05469, 2015.
[19] Coats A. and Redfern J.: Nature, 1964, 201, 68.
[20] Slopiecka K., Bartocci P. and Fantozzi F.: Appl. Energy, 2012, 97, 491.
[21] Gedevanishvili S., Pal Dey S. and Rasouli F.: J. Anal. Appl. Pyrol., 2006, 76, 70.
[22] Hu R. and Gao S.: Thermal Analysis Kinetics. Chinese edn., 2010.
[23] Song C., Ai N., Shan S. and Ji J.: Energ. Source. A, 2013, 35, 1056.
[24] Ren S., Lei H., Wang L. et al.: Biosystem Eng., 2013, 116, 420.
[25] Islam M., Asif M. and Hameed B.: Bioresource Technol., 2015, 179, 227.
[26] Chen W.-H. and Kuo P.-C.: Energy, 2010, 35, 2580.
[27] Acıkalın K.: J. Therm. Anal. Calorim., 2011, 109, 227.
[28] Yang H., Yan R., Chen H. et al.: Fuel, 2007, 86, 1781.
[29] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press 2013.
[30] Chen W.-H., Cheng W.-Y., Lu K.-M. and Huang Y.-P.: Appl. Energy, 2011, 88, 3636.